Quantum Optomechanics

A Fabry-Perot type cavity optomechanical system in a dilution refrigerator.

 

Optical setup for controlling micromechanical oscillators in cavity optomechanics.

Ultra-stable Fabry-Perot type cavity optomechanical system.

 

High-quality SiN membrane mechanical oscillator used for cavity optomechanics experiments.

 

The quantum optical control of solid-state mechanical devices, quantum optomechanics, has emerged as a new frontier of light-matter interactions. Our group has been contributing to this development since the beginning, for example with implementations of laser cooling and demonstrations of strong coupling, as well as with introducing novel optomechanical systems, protocols and applications. Recently, we have applied Kalman filtering for optimal state estimation of cavity optomechanical systems, which is a prerequisite for achieving real-time quantum control over mechanical states of motion. In another recent work we have created pairs of single photons and single phonons in an optomechanical two-mode squeezing process, which is a primer for a nano-mechanical single photon-phonon quantum interface. Our current goal is to extend the level of available quantum optical control schemes, for example to the domain of quantum non-demolition measurements.         

 

Publications (selected):

Nonclassical correlations between single photons and phonons from a mechanical oscillator
R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause, V. Anant, M. Aspelmeyer, S. Gröblacher
Nature 530, 313-316 (2016)

Optimal state estimation for cavity optomechanical systems
W. Wieczorek, S. G. Hofer, J. Hoelscher-Obermaier, R. Riedinger, K. Hammerer, M. Aspelmeyer
Phys. Rev. Lett. 114, 223601 (2015)

Cavity Optomechanics
M. Aspelmeyer, T. J. Kippenberg, F. Marquardt
Rev. Mod. Phys. 86, 1391 (2014)

Squeezed light from a silicon micromechanical resonator
A. H. Safavi-Naeini, S. Groeblacher, J. T. Hill, J. Chan, M. Aspelmeyer, O. Painter
Nature 500, 185–189 (2013)

Cooling-by-measurement and mechanical state tomography via pulsed optomechanics
M. R. Vanner, J. Hofer, G. D. Cole, M. Aspelmeyer
Nature Communications 4, 2295 (2013)

Quantum Optomechanics
M. Aspelmeyer. P. Meystre, K.Schwab
Physics Today 65 (7), 29 (2012)

Laser cooling of a nanomechanical oscillator into its quantum ground state
J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S.Gröblacher, M. Aspelmeyer, and O.Painter
Nature 478, 89-92 (2011)

Pulsed quantum optomechanics
M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, Č. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer
PNAS USA 108, 16182 (2011)

Observation of strong coupling between a micromechanical resonator and an optical cavity field
S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer
Nature 460, 724-727 (2009)

Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity
S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, M. Aspelmeyer
Nature Physics 5, 485-488 (2009)

Optomechanical entanglement between a movable mirror and a cavity field 
D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer
Phys. Rev. Lett. 98, 030405 (2007)

Self-cooling of a micro-mirror by radiation pressure
S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. Schwab, D. Baeuerle, M. Aspelmeyer, A. Zeilinger
Nature 444, 67-70 (2006)