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A B S T R A C T S

Measurement apparatuses mark the boundary between the prob-
abilistic quantum description of nature, and the intrinsic definiteness
of observations; this is the Heisenberg–von Neumann cut between
unitary and projective dynamics, in the related models of measure-
ment devices. The closer the cut is to the observer, the larger their
knowledge and control of the apparatus’ quantum state – possibly
enabling quantum enhancement of the measurement. We propose a
protocol to demonstrate that the motion of an object is entangled with
the light probing its position in optomechanical devices; thus shifting
the cut towards the photodetection.

Our scheme applies in a broad range of parameters and for compar-
atively little experimental efforts (e.g., datasets generated for another
purpose can be used). In particular, it applies to the stationary regime
where optomechanical entanglement has not yet been experimentally
verified. Theoretical analyses of five currently existing implementa-
tions (membranes, photonic crystal, and levitated nano-particles with
and without cavity) indicate that they are limited by the presence of
additional mechanical modes. We find that reducing the temperature
of the mechanical bath(s) is the most efficient way to overcome the
limitations. Additionally, high temperatures set stringent constraints
on the stability of the mechanical frequency during the measurement.

We perform extensive, systematic, and creative analyses of experi-
mental datasets from four of these devices. The gathered experience
highlighted several pitfalls in certifying Gaussian entanglement from
measurement records and we propose solutions to mitigate them.
Unfortunately, we could not demonstrate entanglement convincingly

Our protocol entails, first, a general verification theorem to infer
light–mechanics entanglement form entanglement between measur-
able modes of light only. Second, we propose an explicit procedure
based on successive and non-overlapping temporal modes of light; it
is designed for high-Q mechanical devices, in the high-temperature
limit, and in the unresolved sideband regime or without an optical
cavity. Third, the exact symbolic expression of the measured state can
be computed, enabling fast parameter sweeps. Fourth, we provide
an explicit approximate expression for the Einstein-Podolsky-Rosen
(EPR) variance test of entanglement. It allows to understand and
interpret physically how our protocol detects entanglement in terms
of the devices’ parameters.
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zusammenfassung (german summary)

Messapparate markieren die Grenze zwischen der probabilistischen
Quantenbeschreibung der Natur und der intrinsischen Determinier-
theit von Beobachtungen; dies ist der Heisenberg-von Neumann-
Schnitt zwischen unitärer und projektiver Dynamik in den ents-
prechenden Modellen von Messgeräten. Je näher der Schnitt beim
Beobachter liegt, desto größer ist Wissen und aie Kontrolle über den
Quantenzustand des Apparats - was möglicherweise eine quanten-
verbesserte Messung ermöglichen könnte. Wir schlagen ein Protokoll
vor, mit dem gezeigt werden kann, dass die Bewegung eines Objekts
mit dem Licht verschränkt ist, welches seine Position in optomechanis-
chen Systemen misst; dadurch verschiebt sich der Schnitt in Richtung
der Photodetektion.

Unser Protokoll ist in einem weiten Regime von Parametern und
mit vergleichsweise geringem experimentellem Aufwand anwendbar
(z. B. auf Datensätze, welche für andere Zwecke erzeugt wurden,
können hierfür verwendet werden). Insbesondere gilt es für den sta-
tionäre Systeme, in dem die optomechanische Verschränkung noch
nicht experimentell verifiziert wurde. Theoretische Analysen von
fünf derzeit existierenden Implementierungen (Membranen, photon-
ische Kristalle und levitierte Nanoteilschen mit und ohne optischen
Resonator) zeigen, dass die Beobachtung von Verschränkung von
zusätzlicher mechanischer Moden verhindert wird. Wir stellen fest,
dass die Absenkung der Temperatur des mechanischen Bades (der
mechanischen Bäder) der effizienteste Weg ist, um diese Einschränkun-
gen zu überwinden. Außerdem stellen hohe Temperaturen strenge
Anforderungen an die Stabilität der mechanischen Frequenz während
der Messung.

Wir führen umfangreiche, systematische und kreative Analysen
von experimentellen Datensätzen von vier dieser Geräte durch. Die
gesammelten Erfahrungen haben mehrere Fallstricke beim Nachweis
der Gaußschen Verschränkung anhand von Messdaten aufgezeigt und
wir schlagen Lösungen vor, um diese zu vermeiden. Leider konnten
wir Verschränkung nicht überzeugend nachweisen

Unser Protokoll beinhaltet erstens ein allgemeines Verifikationsthe-
orem, um von der Verschränkung zwischen messbaren Lichtmoden
auf die Verschränkung zwischen Licht und Mechanik zu schließen.
Zweitens schlagen wir ein explizites Verfahren vor, das auf sequen-
ziell und nicht überlappenden zeitlichen Lichtmoden basiert; es ist
für mechanische Geräte mit hohem Q, im Hochtemperaturbereich
und im unaufgelösten Seitenbandregime oder ohne optischen Res-
onator konzipiert. Drittens kann der genaue analytische Ausdruck
des gemessenen Zustands berechnet werden, was schnelle Paramet-
ersweeps ermöglicht. Viertens liefern wir einen expliziten Näher-
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ungsausdruck für den Einstein-Podolsky-Rosen (EPR) Varianz Ver-
schränkungstest. Er erlaubt use physikalisch zu verstehen, wie un-
ser Protokoll Verschränkung in Bezug auf die Parameter der Geräte
erkennt.
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N O TAT I O N S

We chose to lighten the notation as much as possible, at the cost of having context-dependent
expressions. Operators are prominent in the entire thesis and are not highlighted with hats unless
otherwise stated. The Fourier transform of a function or operator h(t) is denoted h(ω), i.e. it is
recognisable only from the arguments; see also our conventions Eqs. (C.8) of the Fourier transform
(especially how it behaves w.r.t. the adjunction). Unless explicitly stated we use angular frequencies
with [rad Hz] units: ω = 2πν with ν in hertz. Arrays of elements (vectors) are written in bold-type font.
Matrices are denoted with capital letters. Integral boundaries are written out explicitly only in the first
occurrence, afterwards they are left tacit (unless they change). Integration over multiple variables are
denoted by a single integral symbol, but the (infinitesimal) integration variables are always explicit.
The reduced Planck constant  h := h/(2π) and the speed of light c are never set to 1, but work with
rescaled dimensionless variables. Dimensionfull operators are denoted with capital letters (e.g. Q for
position) and their corresponding dimensionless operators are denoted by lowercase letters (e.g. q).
We use quantum optical conventions for the commutation relations where (dimensionless Hermitian)
quadratures commute to i (the imaginary unit) and ladder operators commute to 1. The zero-point
fluctuations (zpf) of harmonic oscillators quadratures follow the optomechanical convention. Quadrature
of (massive) harmonic oscillators are q (position) and p (momentum), and those of a light field are x
(amplitude) and y (phase). r or r is a place holder for quadratures, ladder operators or vector thereof.
We use the dot notation for (total) time derivatives; and we do not use primes to indicate derivatives. A
definition is indicated by the symbol :=, approximations are indicated by ≈, ∼ indicates the scaling or
order of magnitude, and the big-O notation O(□) is for the usual asymptotic scaling. The empty box
symbol □ is a dummy placeholder (not a differential operator). The expectation value brackets ⟨□⟩ are
either the quantum mechanical expectation value Tr[□ρ] or the mathematical expected value E[□]. The
terms "vacuum" and "shotnoise" are used interchangeably in this thesis. We use italic-type fonts is used
to emphasisea term or to introduce an important (possibly technical/jargon-like) term that will come up
regularly.

Symbols Definitions and comments

□ Dummy placeholder.

δjk, δ(□), Θ(□) Kronecker-delta symbol, Dirac-delta distributions, and Heaviside step function.

I, In Identity operator or matrix; subscript n indicates the dimensions.

N(m, σ) (Multivariate) normal/Gaussian distribution with (vector) of first moment(s) m
and (matrix of co-)variance(s) σ.

var[□] , std[□] Variance var[x] := E[x2] − E[x]2 ≡
〈
x2〉− ⟨x⟩2; standard deviation std[x] :=

√
var[x].

qzpf, pzpf Position and momentum zero-point fluctuations of a massive harmonic oscillator
mode in [m] and [kg m/s] Eqs. (2.14): qzpf :=

√
 h/(2mωm) and pzpf :=

√
 hmωm/2.
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Symbols Definitions and comments

rq, rl, r Vector of dimensionless operators, superscript indicates representation: (q) quad-
rature, (l) ladder, () unspecified; rl = Rnr

q with Rn =
⊕n

1
( 1 i

1 −i
)
/
√

2 Eqs. (2.18)
and (C.4).

Ω 2M-by-2M symplectic form Eq. (3.2) encoding bosonic commutation relations
Eqs. (2.15):

[
rj, rk

]
= iΩjk, Ω :=

⊕M
l=1

( 0 1
−1 0

)
, with r = rq, rl.

σ Covariance matrix Eq. (3.8c): σ :=
〈
rrT

〉
sym − ⟨r⟩2, with symmetrised expectation

value; equivalent to the state of a Gaussian state (when 1st moments are zero).

Σ,σ Covariance matrices estimated from measured data Eq. (H.4); lowercase for calib-
rated dimensionless case; cf. Appendix H.

Frequencies below are in [rad Hz] (unless stated otherwise); in multi-mode scenario, j indexes the mode.

ωm,ωj Mechanical resonance frequency; in multi-mode scenario ω1 is the targeted mode.

γm, γj Mechanical damping rate (FWHM).

Qj, Qjk Matrix of mechanical quality factors Qjk := ωj/γk, ≫ 1 Eq. (5.16).

κ Cavity linewidth (FWHM).

nth, nj Thermal bath occupation number for temperature Tj in [K] Eqs. (A.26) and (A.27):

nj = (e hωj/(kBTj) − 1)−1 ≈ kBTj
 hωj

, in this document nj ≫ 1 (5.17).

g0, g0,j Single-photon optomechanical coupling.

g, gj (Dressed) optomechanical coupling Eq. (5.8), in this document gj ≫ g0,j Eq. (8.3).

ωd,ωcav, ∆ Drive frequency, cavity resonance frequency, and detuning ∆ := ωd −ωcav, as-
sumed zero in the protocol Eq. (8.5).

Γ ro
j , Γ

ba
j Readout rate by the light Eq. (5.24a): Γ ro

j
:=

4g2
j

κ ; see Sec. 4.3 for comments on Γba
j .

Γ th
j Thermal decoherence rate Eq. (5.24b): Γ th

j := γjnj.

Γ tot
j "Total rate" of the dynamics Eq. (5.24d): Γ tot

j
:= Γ ro

j + Γ th
j .

C,Cj Optomechanical cooperativity Eq. (5.24c): Cj := Γ ro
j /Γ

th
j .

χj Mechanical susceptibility Eq. (5.23d): χj(ω) := 2ωj/(ω
2
j −ω

2 + iγjω) = (ω −

ω−
j )

−1 − (ω−ω+
j )

−1, with ω±
j ≈ ±ωj − iγj/2 Eqs. (9.18).

χopt Susceptibility of the cavity Eq. (5.23e): χopt(ω) :=
√
κ/(κ− 2iω) ≈ 1/

√
κ Eq. (9.20).

fE, fL Early and late temporal mode functions Eqs. (8.7): fE(t) :=
√

2ΓeΓTsep/2e−iωEt

Θ(−t− Tsep/2) with ωE := ω̄+ i Γ , and fL(t) := fE(−t).

Fα, Ftm Matrices of mode profiles; Fα (α = E,L) are diagonal in ladder operator representa-
tion Eq. (9.3): Fα(ω) = diag[fα(ω), f∗α(−ω)]; Ftm = (FE, FL)

T Eq. (9.5).

Γ Temporal modes decay rate (Lorentzian bandwidth, HWHM) Eqs. (8.7).

ω̄ Temporal modes demodulation frequency Eqs. (8.7); ideally ω̄ = ω1.

Tsep Delay between early and late modes; Tsep ≳ κ−1 > 0 in this document; cf. Sec. 7.2.

δω, d Mismatch between temporal modes demodulation and targeted mode Eq. (8.8):
δω := ω̄−ω1 = ω1 d, in this document |d| ≪ 1.
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Symbols Definitions and comments

∆ω,D Frequency difference with target mode Eq. (5.11): ∆ω := ω2 −ω1 = ω1D.

ν Shorthand notation: ν := Γ
ω1

, in this document 1 ≫ ν2 ≫ Q−2
1 Eq. (9.30).

σout, σtm State of cavity output light Eq. (9.9) and of the temporal mode of the light Eq. (9.11).

∆EPR EPR-variance Eq. (3.13), ∆EPR := var
[
x1 + x

θ
2
]
+ var

[
p1 − p

θ
2
]

(θ denotes rotation of
the second party); ∆EPR < 2 ⇒ ent.

Wopt, Wcross
opt ,

wcross
Optimised witness, necessary and sufficient for entanglement of Gaussian states
[HE06]; cf. Sec. 3.4.2. Cross-validated witness matrix Wcross

opt with witness value
wcross = Tr[Wcross

opt σ
cross] Eq. (11.1).

Acronyms & abbreviations

logneg Logarithmic negativity

BS Beam splitter

dar Darknoise

ent. Entanglement

FWHM Full width at half maximum

HWHM Half width at half maximum

lhs Left-hand side

PPT Positive partial transpose

PSD Power spectral density

QLE Quantum Langevin equations

rhs Right-hand side

sho Shotnoise

sig Signal

std Standard deviation

tm Temporal modes

th Thermal

TMS Two-mode squeezing

vac Vacuum

zpf Zero-point fluctuations





1
I N T R O D U C T I O N

I recall well my mindset after the masters: eagerness to dive "deep"
into quantum mechanics: I was ready to study anything, but please,
make it quantum! I think it was less than two months after I had
started the PhD – I was already in Hannover as a guest student in
Klemens Hammerer’s group – that I had to learn my first "profound"
lesson about quantum optomechanics; in the approximate words of
Klemens: "Corentin, you know, the thing about these optomechanical
systems is that they are essentially classical". Sounds like a bad start
for a student who wants to learn nature’s quantum secrets, hum?...
Since then, I have put a great deal of effort figuring out for myself what
is classical and what is quantum in linear/Gaussian optomechanics.
This is a regime where classical and quantum predictions overlap
– where they merge and also depart from each other. Insights into
the classical-versus-quantum topic are an important outcome for me,
and they will appear repeatedly in this document (like a tune in the
background).

This thesis looks at entanglement between light and the motion of a
mass that interact with each other – this is optomechanics. This work
assumes that quantum mechanics is the more fundamental or accurate
model of nature. Importantly, it is possible to make non-quantum
models of the optomechanical systems at hand that lead to the same
predictions, but whose interpretation differs; we will carefully make
this point clear in Part i.

Fig. 1.1 Light carries mo-
mentum so that its reflection
"kicks" the surface and al-
ters the object’s momentum.
Simultaneously, the moving
surface alters the frequency
of the reflected light (Dop-
pler effect), thereby, its mo-
mentum.

Two cornerstones of this thesis are stationarity and demonstrability.
Entanglement in optomechanical devices is well understood and nu-
merous experiments have demonstrated it in diverse configurations:
between separated mechanical oscillators mediated by light [Rie+18;
OK+18], between different light tones mediated by a mechanical oscil-
lator [Bar+19; Che+20], and between light and mechanics in a pulsed
regime [Pal+13]. However, it remains an outstanding goal to demon-
strate light–mechanical entanglement in the stationary regime. The
goal of this thesis is to propose and explore a protocol that can be
performed with currently existing optomechanical devices. The result
of close collaborations between theorists and experimentalists is, in
my opinion, an interesting mix of general and abstract thoughts with
practicable consequences. Arguably, the main success of our work is
that our protocol has been used to study real-life experimental data;
and the main failure is that none of the attempts have succeeded yet...

1
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1.1 optomechanics

The central physical platforms at the focus of this thesis are op-
tomechanical devices. They are systems where electromagnetic radi-
ation interacts with the motion of an object; one refers to the object
and its motion as the mechanical part of the optomechanical device. In
this work, we specifically treat mechanical systems that are solid-state
objects and the electromagnetic radiation will always be light at op-
tical frequencies (i.e. from mid-infrared ∼ 1 THz to mid-ultraviolet
∼ 1000 THz). The interaction is momentum exchange between the
radiation and the object’s motion: the light exerts radiation pressure on
the object, while the momentum (k-vector) of the reflected (scattered)
light depends on the object’s motion; see Fig. 1.1.

Fig. 1.2 Schematic of a cav-
ity optomechanical device:
the mechanical mode is a
mirror on a spring, it inter-
acts (via radiation pressure)
with a cavity mode, which
is the interface to the drive
(in) and measurement (out)
channels. Mirrors, springs,
cavity, and lasers illustrate
engineering and control.

We also restrict our attention to devices for which a quantum de-
scription is possible and actually relevant. Relevant in the sense that
the predictions are different from non-quantum – or classical 1 – phys-
ical theories; and they are measurable. A typical feature of quantum
optomechanical devices is low mechanical losses of the mechanical
part (i.e. under-damped, high-Q regimes); that is good isolation. In
addition, a high degree of control over the processes affecting the
system is necessary. This implies, for instance, working in vacuum, at
low temperatures, engineering of the mechanical degree of freedom
via nano-/micro-fabrication, and engineering of the light using a cav-
ity; see Fig. 1.2. Lastly, measurements must be accurate down to the
"quantum regime" in order to resolve quantum effects: prominently in
this work, the effects of quantum noise limit how well one can know
the state of a (quantum) system.

1.2 quantum–classical prediction boundary

As mentioned already, the working hypothesis in this thesis is that
quantum mechanics is the underlying, more fundamental theory, and
classical ones are accurate in limit cases – typically where the number
of degrees of freedom and/or excitations involved are macroscopic-
ally large (alike Newtonian mechanics being the low velocity limit
of special relativity). Experiments operating "deep in the quantum
regime" (i.e. far away from the boundary where classical and quan-
tum predictions still match) legitimate this hypothesis because they

1. We often resort to the fuzzy jargon terminology of classical to qualify physical
models and theories and distinguish them from non-classical ones, like quantum
mechanics. It is a handy concept, but a precise meaning is hard to state in a way
that makes everyone happy. My definition – which is good enough for the scope
of this thesis – is: classical theories are established physical theories that are not
(or do not include) quantum mechanics. Examples relevant in this document are:
Newtonian mechanics, thermodynamics, and statistical mechanics. By extension, one
might speak of classical systems, states, descriptions, models, etc.
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provide observations not predicted (or incompatible) with classical
theories. Important examples are: single-photon anti-bunching (sub-
unit second-order coherence g(2)) demonstrating the particle nature
of light [Cla74]; single-photon interference showing the wave nature
of light (particles) [GRA86]; matter-waves with electrons [DG27] up
to large molecules [Fei+19], and, of course, Bell non-locality [FC72;
AGR81; AGR82; ADR82; Hen+15; Giu+15; Sha+15].

Albeit bearing a relevant and informative quantum description, the
devices we treat are not deep in the quantum regime. They are at
the boundary where classical and quantum predictions are the same –
but interpretations differ. We will explain that limits on measurement
precision derive from the principles of quantum mechanics. The
interpretation is that uncertain knowledge of a state (and therefore
achievable measurement) is a fundamental property of nature. On
the other hand, a classical model must be supplemented with an ad
hoc noise process to explain any limitation preventing more precise
knowledge. Classically, there is no fundamental limit as to how well
a state can be known and measured; hence the interpretation is that
infinitely precise measurements are unfeasible in practice and realistic
models must be completed (or fixed) with some unknown added
noise.

As a matter of fact, the Gaussian optomechanical entanglement we
study corresponds to a reduction of (quantum) noise below some
threshold, and it is the quantum interpretation that implies that this is
something special – entanglement indeed. In contrast, classical models
do not see anything special about the reduction of ad hoc unknown
noise (beyond the mere associated precision improvement). Therefore,
a successful detection of optomechanical entanglement does not allow
one to decide which of the quantum or classical interpretations is
correct.

1.3 entanglement

Entanglement is a correlation that can exist between at least two
quantum systems. This correlation is of quantum nature because it
cannot be described using other established physical theories (which
do not incorporate quantum mechanics). Just as there is no way to
describe colours in a world that is black and white, there is no way
for the grey-scale classical theories to describe colourful entangle-
ment from quantum mechanics (metaphor inspired by F. Jackson’s
"knowledge augment" or "epiphenomenal qualia" [Jac82; Jac86]).

Correlations are (or encode) information, whether they are classical
or quantum. Entanglement correlations can be used to perform certain
tasks differently, and sometimes better than with classical correlations:
prominently quantum computations use entangled qubits and are more
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efficient (i.e. require fewer operations) than normal computers for
these tasks [NC10]. Entanglement can be seen as a resource – like heat
in thermodynamics. 2

Two systems originally not entangled – or separable – are entangled
after they interacted, in general. Put differently, obtaining a separable
joint state after an interaction in the quantum formalism should be
thought of as an atypical scenario. However, it is far more common to
observe separable states than entangled ones in physics laboratories.
From the quantum point of view, I like to understand this contrast as
a "dilution" effect: because any interaction leads to entanglement, and
because, realistically, the systems under consideration will interact
with many other systems forming their environments (e.g. gas mo-
lecules, black body radiation from objects and walls around them, etc.),
therefore entanglement dilutes across all the systems that interacted.
Like heat, entanglement must be concentrated to be used or detected.
Like heat, this is achieved, for example, by isolating the systems one
wants to entangle.

Quantum mechanically, entanglement is ubiquitous and omnipre-
sent at all times. An operator can use it (as a resource) if they know
enough about how entanglement is shared or diluted across systems.
In fact, knowledge and usage of entanglement are closely related to
the degree of control and characterisation of the systems. Conversely,
ignorance and lack of control are essentially what make entangle-
ment difficult to observe or impossible to use. Roughly speaking, the
dichotomy knowledge-versus-ignorance is closely related to entan-
glement and separability, and it characterises the difference between
measurements and decoherence.

1.4 example of a quantum position sensor

An optomechanical device is a prototypical sensor that measures
the position of the mechanical degree of freedom. Because we (can)
describe it in full quantum mechanical terms, it is a minimal imple-
mentation of a quantum measurement apparatus. Partly because the
quantum description is equivalent to a classical one, the full quan-
tum model is workable and has exact analytical solutions. Moreover,
currently existing systems are appreciably affected by quantum ef-
fects [AKM14]. Therefore, (quantum) optomechanical devices offer an
opportunity to study theoretically and experimentally the details of
quantum measurements, which is relevant both from a fundamental
and a technological point of view.

2. Entanglement is not heat. The analogy here is meant as a "warm-up thought"
for unfamiliar readers. Importantly, this analogy quickly stops to hold when one
examines its consequences: for instance, there is no second law for entanglement
[LR23].



1.4 example of a quantum position sensor 5

Quantum mechanics sets constraints 3 on how precisely a state can
be determined. It is technologically useful to acknowledge and under-
stand these constraints if one wants to build very precise measurement
devices. An extreme example is the gravitational wave observatory
Advanced LIGO that was limited by quantum noise (at large frequen-
cies in the measurement band) when it made the first detection of
a gravitational wave in 2015 [Abb+16]. Moreover, a thorough un-
derstanding of quantum noise allows one to overcome certain of its
limitations, as is currently the case in LIGO and Virgo gravitational
wave detectors that use squeezed light to mitigate their quantum noise
[Aba+11; BHS19; Tse+19; Ace+19]. Furthermore, the study of quantum
noise is a central topic in the field of "quantum metrology", where our
understanding of quantum mechanics allows to improve sensors, for
example by mitigating quantum noise or making them less intrusive
[GLM06; GLM11].

Generally speaking, the principles (axioms) of quantum mechanics
look like a set of modelling and calculating rules that make accur-
ate and useful predictions about nature, but for which we miss an
interpretation. For instance, according to the axioms of quantum
mechanics, it is not clear why quantum measurement apparatuses – in
which projective dynamics happen – are different from other devices –
whose evolution is unitary. This criticism was already clearly formu-
lated by von Neumann in his book [VN96, Ch. 6] published in 1932.
The contrast between projective and unitary dynamics relates to the
contrast between the definite measurement results – a fundamentally
classical notion – and the indefinite nature of quantum states that can
be superpositions. A candidate for this discrepancy is the large scale
difference between typically microscopic quantum systems and the
macroscopic world where measurement results are meaningful and
modelled. Assuming that the quantum theory is more fundamental
than classical theories, then why are its effects (like superpositions)
not observed at macroscopic scales? Decoherence is a mechanism
that explains the emergence of classical physics for an observer from
incomplete information: the full quantum state of an imperfectly isol-
ated system becomes inseparable from the state of its environment,
which is inaccessible to the observer [Sch07; Zeh70; Zur82; Zur03].
Importantly, the decoherence mechanism relies on both unitary and
projective dynamics and it does not explain why both are required
[Sch19].

There are several alternatives to the projective dynamics and its
apparent necessity for making accurate predictions. On the one hand,
it has been argued that the universe is a pure state with "branches"
and observers follow one branch every time they make a measure-
ment; globally, all the possible configurations (all the branches of

3. Depending on the context or how they affect the system, they are also called
quantum limits or quantum noise.
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observers experiencing different measurement results) do happen in a
quantum superposition; this is (roughly) H. Everett’s "relative state"
(or "many-world") formulation of quantum mechanics [Eve57]. An-
other approach is to assume that quantum mechanics is not the theory
underlying macroscopic phenomena; it thus stops making accurate
predictions as the size of the systems increases. Examples of proposals
going in that direction are "collapse models" that typically assume
a generalised Schrödinger equation with additional terms; see for
example this recent review [BDU23] or the thesis of my colleague
Philipp Köhler [Kö21]. Because measurement apparatuses map and
amplify microscopic quantum states to macroscopic measurement
results, they are the machines where the scale conversion happens,
and it seems sensible to look for answers in their study.

Fig. 1.3 Changes in posi-
tion of the object change
the point of reflection of the
sent radiation. The reflec-
ted light thus has a different
phase that can be measured
by interfering sent and reflec-
ted light.

Let us make an example: consider a sensor measuring the position of
an object based on the light reflected from it – this is an optomechanical
device. Depending on where the reflection occurs along the travelling
electromagnetic wave, the reflected wave will have a different phase
than the one travelling towards the object; see Fig. 1.3 for a depiction.
This means that the position of the object and the (physcial) phase of
the reflected light are correlated. We deduce the phase difference from
the interference of the light sent with its reflection. With an accurate
model and characterisation of all these steps, the position of the
reflecting surface is deduced from a measurement of the interference
intensity.

This is a classical description of a position sensor. The quantum
version requires first changing the wording and calling entanglement
the correlation between the object’s position and the phase (quad-
rature 4) of the reflected light. Second, in the quantum formalism,
a measurement is (effectively) described by a projection of the state
being measured onto the basis of the observable being measured. Be-
cause this projected state is, in general, different from the one before
the measurement, this implies that the measurement perturbed the
state (from the perspective of the observer). In the present example,
the object is projected onto the eigenstate of position associated with
the measured position (eigen)value. This is arguably the simplest
and most common (quantum) model for position sensing with such
a device. The measurement outcome from the projection is then clas-
sically correlated with the phase of the light. After the projective
dynamics, the quantum description is not necessary to make accurate
predictions; in practice, one thus resorts to (non-quantum) classical
Maxwell equations to model how phase information is recovered from
the interference.

In this quantum measurement model, one can assume that it is the
reflected light that experiences projection onto an eigenstate of the

4. Physical and quadrature phases are discussed in the next chapter.
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phase quadrature, rather than the object directly; further down the
line, one can model that it is the interfered light that is projected by the
intensity measurement; even further, one can assume that the electrons
in the photocurrent are projected into a definite current value; and
so on. The axioms of quantum mechanics provide no guidance as

Fig. 1.4 Mechanical state
is projected onto a position
eigenstate correlated clas-
sically to different relative
phases of in- and out- going
light: this is the simplest cor-
rect model of this quantum
position sensor.

to "where" the projective dynamics are correctly modelled, and the
matter is left to the skills of the physicists making the model. This
issue was discussed by von Neumann [VN96, Ch. 6] who proposed
that the position of the cut marking the projective dynamics must be
irrelevant – as long as it is consistent with the quantum theory. This
cut is known as the Heisenberg–von Neumann cut. Figure 1.4 depicts
the cut in the model above where the object’s state is projected onto
the position eigenbasis.

Assuming that it is the reflected light that is projectively measured
by its phase quadrature observable, then the projective dynamics hap-
pen at the interference detection; see Fig. 1.5. A quantum description
of the optomechanical state (mechanics + reflected light) describes the
correlation that encodes the object’s position onto the light’s state –
this correlation is precisely the optomechanical entanglement we want
to demonstrate. Its observation in an experiment implies that the
projective dynamics have not yet happened, thus validating the model
of Fig. 1.5 with a shifted Heisenberg–von Neumann cut compared to
Fig. 1.4.

Fig. 1.5 Heisenberg–von
Neumann cut is shifted at
the interface of photodetec-
tion. There, the light is
projected onto a phase quad-
rature eigenstate. Before
the projection, the correla-
tion encoding the mechan-
ical position onto the light
is optomechanical entangle-
ment.

Importantly, both models with different positions of the cut lead to
equivalent predictions for the measurement results – as conjectured
by von Neumann. In particular, both lead to the (effective) projec-
tion of the object’s position state. In the scenario with a shifted cut,
this happens precisely because the reflected light and the object are
entangled. What is more, in the quantum formalism, projecting the
light’s state instantaneously projects the object’s state; this is an update
of the information about the state available to the observer; see also
App. B for a discussion of non-local realism, Bell inequalities, and the
(Gaussian) entanglement detection discussed in this work.

1.5 summary of results

We have introduced the broad framework in which the research
presented in this thesis stands: it is a particular case study of quantum
measurement. We believe that our approach, based on measurements
and geared towards experimental realisation, is useful and interesting
to study quantum measurement devices more broadly. Importantly,
the concepts exposed above are well established and understood, and
have already been verified by a number of experiments. Measurement,
decoherence, and the "emergence of a classical world" remain, however,
the subject of intense studies and debates. This is certainly due to the
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rich fundamental physics and high technological potential associated
with it.

The contribution of this work is a very particular application of
entanglement being the mediator of information in a quantum meas-
urement. A successful demonstration of stationary optomechanical
entanglement would amount to a verification of the equivalence of
the shifted von Neumann–Heisenberg cut. It is important to note
that optomechanical entanglement has been demonstrated in a pulsed
scheme [Pal+13; Hof+11a] that corresponds to single-shot measure-
ments, while, in the stationary regime we consider, we are in the
continuous monitoring regime – and an experimental verification
remains an open challenge.

The results presented in this document are:
• We provide a detailed description of an experimentally viable pro-

tocol to demonstrate entanglement between a mechanical oscillator
and the light that interacted with it – at all times, in the stationary
regime [Gut+20]. More specifically, we provide a general entan-
glement verification theorem that allows to certify optomechanical
entanglement from measurements with few assumptions compared
to existing proposals. We propose an explicit experimental protocol
compatible with already existing experimental setups. Moreover,
the scheme requires relatively little experimental effort, in prin-
ciple; we could even re-use datasets that were obtained for other
purposes.

• We model the protocol and provide the exact analytical state of
the detectable state in symbolic form; this allows for efficient/fast
parameter sweep compared to simulations based on time evolution
of the dynamics.

• We also compute an approximate formula for the EPR-variance (a
sufficient test of entanglement); it enables physical interpretation
and understanding of the role of the different parameters in this
(sub-optimal) detection of entanglement; moreover, we determine
from it the relevant/optimal parameter regimes for entanglement
detection and we find that they are currently accessible.

• We analysed experimental datasets from four devices that are differ-
ent implementations of optomechanics – highlighting the diversity
of the field and the generality of the formalism – in different oper-
ation regimes. Crucially, none of these experiments succeeded in
demonstrating stationary optomechanical entanglement; moreover,
we are aware of at least one additional unsuccessful attempt to
perform the protocol, with another device in another group, inde-
pendently from our effort.

• This worrying score of five attempts and zero success leads to
additional theoretical insights that provide plausible explanations
for why the theoretical model predicts detectable entanglement but
experimental verification remained evasive. Firstly, we realise that



1.5 summary of results 9

the original model (involving a single mechanical mode) would
always predict detection of entanglement making the result trivial
as a result of a too simplistic model 5; second, additional mechanical
modes (and probably any spectral features) far from the mechanical
frequency of interest, relative to the filters defining the modes
tested for entanglement, do significantly alter the feasibility of
the protocol. The subsequent, non-trivial, theoretical predictions
indicate that lowering the temperature of the baths driving the
mechanical modes is the most efficient way to enter regimes of
detectable entanglement. Lastly, the mechanical frequency must be
much more stable than anticipated.

• In the process of analysing the experimental data, we learn how
to alleviate false-positive entanglement with conservative unit cal-
ibration and an entanglement test that mitigate bias. We find that
the use of evaluations accounting for the possible multiple mech-
anical modes is always beneficial for detecting entanglement. And
processes, even relatively far detuned in frequency, to influence the
results.

5. Einstein’s famous warning resonates loud here: "Make it as simple as possible,
but not simpler".
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P R E FA C E T O PA RT i

The purpose of this part is to introduce the physical concepts and
tools required to understand the protocol we propose in Part ii as
well as the physical systems we are concerned with. In this part,
no original formal results are presented and suitable references are
provided along the way. Notations and conventions are also made
explicit.

We attempt to highlight the gist of what it means to observe Gaus-
sian entanglement between an object and the apparatus measuring it.
In so doing, we argue that the root of the entanglement and quantum-
ness discussed in this thesis lies in the non-commuting properties of
conjugated quadratures. This is in essence the message of Ch. 2.

The systems of interest have states in infinite-dimensional Hilbert
spaces that are conveniently handled with the continuous variables form-
alism presented in Ch. 3. Moreover, the states that are most accessible
and practicable in experimental studies form the subset of Gaussian
states that bear a mathematically convenient and powerful description.
In particular, several computationally efficient entanglement tests are
available.

The wanted optomechanical entanglement is, in essence, the entan-
glement existing between an object and a probe measuring it before
the effective projective dynamics of a quantum measurement. In fact,
this is the same entanglement correlation that exists between the ob-
ject and its environment leading to decoherence: the difference being
the flow of information relative to the observer (or the model). Our
analysis explicitly incorporates measurement and decoherence; the
mathematical framework and formalism to do so are called open-system
dynamics and it is introduced in Ch. 4.

Lastly, in Ch. 5, we provide a physical description and discussion
of what optomechanical systems are – and how the mechanical and
optical parts can be implemented. The interaction is restricted to
radiation pressure, the optomechanical Hamiltonian is introduced,
and the corresponding unitary dynamics are briefly discussed. Then
the full quantum open-system model is stated and its solutions in
frequency space are given. They are the basis for the proposed protocol
of Part ii.
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2
E L E M E N T S O F Q UA N T U M M E C H A N I C S

This section introduces the necessary physical concepts used in this
work. In so doing, formalism and notation are laid out. We attempt
to convey our physical understanding and interpretation through a
discussion of the formal mathematical tools. For precise, rigorous,
and thorough derivations and discussions of the quantum theory, we
recommend standard textbooks like [CTDL05; SN20]; for quantum
optics we recommend [VW94; Lou00; GAC10; WM06].

2.1 continuous position and momentum observables

Consider a quantum object characterised by its position Q. We
assume that this object has no other internal or external degree of
freedom. Position is an observable – i.e. it can be measured – there-
fore Q is a Hermitian operator 1 in the quantum formalism with the
property Q = Q†. The eigenvalues of Hermitian operators are real,
and they correspond to the measurable quantity of the observable:
here, the possible positions of the object. We assume infinite space,
therefore Q is an infinite-dimensional operator with infinitely many
eigenvalues. 2 We use Dirac bra–ket notation [CTDL05]: for each posi-
tion eigenvalue q ∈ R there is an associated position eigenvector |q⟩,
such that Q |q⟩ = q |q⟩. The set {|q⟩ : q ∈ R} of all eigenvectors that
diagonalise Q forms the orthonormal position basis of a Hilbert space
H 〈

q
∣∣q ′〉 = δ(q− q ′) (2.1a)∫∞

−∞ dq |q⟩⟨q| = 1. (2.1b)

The position representation of arbitrary states |ψ⟩ ∈ H is thus

|ψ⟩ =
∫∞
−∞ dq ⟨q|ψ⟩ |q⟩ (2.2a)

where

ψ(q) := ⟨q|ψ⟩ (2.2b)

1. There is no hats on operators in this thesis (except in App. H where it is
explicitly mentioned).

2. The infinite and unbounded nature of the position observable leads to some
mathematical complications in order to speak precisely about its diagonalisation via
the spectral theorem; see [CTDL05, Ch. 3] for a brief discussion of that point and
[Hal13] for the full rigorous explanations.

12
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is a complex valued function that we call the state’s wavefunction (in
position representation).

Changes in position (translations) of the object are described, by
definition, by the canonical momentum 3 P. In quantum mechanics, P
is an operator that is Hermitian because it is observable/measurable.
P is defined formally, in position representation, from its operational
action on a wavefunction: Pψ(q) := −i  h∂qψ(q), so that

P := −i  h∂q. (2.3)

 h is the reduced Planck constant and i :=
√
−1 is the imaginary unit.

The real eigenvalues p – so that P |p⟩ = p |p⟩ – are associated with
the eigen-momentum states |p⟩. They also form an orthonormal and
complete basis of the Hilbert space H〈

p
∣∣p ′〉 = δ(p− p ′) (2.4a)∫∞

−∞ dp |p⟩⟨p| = 1. (2.4b)

With the expression of P in position representation Eq. (2.3), we denote
the wavefunction ψp(q) := ⟨q|p⟩ of the momentum eigenstates in
position representation

Pψp(q) = −i  h∂qψp(q) = pψp(q) ⇔ ψp(q) = Neiqp/ h (2.5)

where N = 1/
√

2π h is the normalisation set by the orthonormality.
With this relation, one finds that the wavefunction in momentum
representation ψ(p) := ⟨p|ψ⟩ 4 of a state ψ ∈ H

ψ(p) =

∫
dq

2π
√

 h
e−i qp

 h ψ(q). (2.6)

It is the Fourier transform (cf. Eqs. (C.8) for definitions and con-
ventions regrading Fourier transformation) of the wavefunction in
position representation. This shows that both representations are re-
lated one-to-one by a Fourier transform, and it makes it explicit that
both eigenbasis are different.

This implies that the quantum state of the object is completely
described by knowledge of its position state or its momentum state:
i.e. the wavefunction ψ(q) in position representation is a complete
description of the state and, equally, the momentum wavefunction
ψ(p) is a complete description as well. 5 Said otherwise, position

3. It is the conserved quantity under translational invariance symmetry, which is
not always the same as the kinetic momentum (mass times velocity). In this document,
unless stated otherwise, we consider canonical momenta.

4. It is the argument that distinguishes the basis/representation, cf. Fourier
transform conventions and notations Eqs. (C.8).

5. For observables with degenerate eigenbasis (like angular momentum), a com-
plete set of commuting observables (e.g. Jz and J2 for angular momentum) and
quantum numbers are necessary to specify a state [CTDL05].
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and momentum are not independent in quantum mechanics – they
relate to each other via the Fourier transform, cf. Eq. (2.5). This is in
contrast to classical kinematics where both position and momentum of
an object must be specified independently to describe its state entirely.

The interdependence of (operator) observables leads to relationships
between what is known and what is knowable from their associated
measurements. An insightful characterisation of these relationships
is provided by the commutation relations of observable operators;
the commutator of operators A and B is defined as [A,B] := AB−BA.
Hermitian operators are diagonal in the same basis if and only if
they commute (commuting observables are called compatible). Position
and momentum have different eigenbasis and thus have non-trivial
canonical commutation relation

[Q,P] = i  hI (2.7)

where I is the identity operator (which we will not indicate further, as
is customary). The commutation relation Eq. (2.7) is associated with
boson statistics. In this thesis, we deal only with bosons and we need
not describe their possible spin degrees of freedom. This relation is
central to our work 6: we argue in the next section that they are the
fundamental basis for the quantum interpretation of the phenomenon
of Gaussian entanglement that we study.

2.2 uncertainty relations

Finite commutation relations between observables set constraints on
how well one can know them relative to each other: this is the result
of what is sometimes called [Gri17, Ch. 3.5] generalised uncertainty rela-
tions. 7 Given that the "uncertainty of an observable" is characterised

by its standard deviation std[A] :=
√

var[A] :=
√

⟨A2⟩− ⟨A⟩2, then the
(quantum) uncertainty of observables A and B are related by 8

std[A] std[B] ⩾
∣∣∣∣⟨[A,B]⟩2i

∣∣∣∣. (2.8)

If A and B commute (are compatible), then there is no limit on how
precisely they might be known simultaneously. If they are incom-
patible, then their commutator scales how much they prevent each

6. In [Hal13, Ch. 12], they explain that, given this commutator, one can formally
derive the physical properties of the operators forming it, and it turns out that
they must correspond to the physical notion of canonically conjugated position and
momentum.

7. Historically, it is a result due to Robertson [Rob29] and Schrödinger [Sch30].
8. This formula is not as general as one would wish (I least I would!) and does not

capture correctly certain tricky cases involving bounded and unbounded operators,
see [Hal13, Ch. 9] for details; they are irrelevant for the purpose of this thesis where
we deal exclusively with quadrature operators (e.g. like position and momentum).
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other from being known better. When the observables are position
and momentum, the result is the well-known Heisenberg uncertainty
relation

std[Q] std[P] ⩾  h/2. (2.9)

From the perspective of the states, described by wavefunctions ψ(q)
and ψ(p) in position and momentum representations, their std scales
the spread of the measurement results of position and momentum,
respectively. The uncertainty relation Eq. (2.9) sets a fundamental
quantum limit on what a state can be – it constrains how ψ(q) and
ψ(p) can look like. See also our discussion of squeezed states in
Sec. A.4 for a pictorial depiction of this concept.

From the perspective of measurements, uncertainty relations set
constraints on how an observer’s knowledge about the system can be
updated by a measurement result. In the context of repeated meas-
urements on the same quantum object, relevant in this work, they
prescribe (quantitatively) how the knowledge of one observable is lost
when gaining information about another non-commuting quantity;
this is what we mean by "measurement disturbance". If one measures
a state in a very well defined position q so that its position uncertainty
std[Q] is much smaller than  h/2, then the uncertainty in momentum
std[P] must accordingly be much larger than  h/2. Consequently, the
broader distribution of momenta will drive the (modelled) dynamics
so that the object might be relatively far away at the time of the next
measurement. In the extreme (and unphysical) case of a perfect pro-
jective measurement on a position eigenstate (i.e. perfectly certain po-
sition state after the measurement) std[Q] (t) → 0 and the momentum
must be accordingly completely uncertain with std[P] (t) → ∞. 9 (This
state has infinite energy which is unphysical. 10)

2.3 density operators

We briefly introduce density operators 11 usually denoted ρ – unfamil-
iar readers are advised to consult sections of standard references that
present the formalism, for example [CTDL05; NC10; WM09].

Density operators describe generally indefinite quantum states – i.e.
imprecisely or imperfectly known. This formalism is necessary to
model the interaction of quantum systems with an unknowable envir-
onment: the so-called open systems introduced and discussed in Ch. 4.

9. An effect well-known from PhD students with evasive quantum supervisors:
prolonged observation of the supervisor in their office puts them in a state with large
random momentum fluctuations; almost surely the supervisor will be gone for the
next student observation attempt.

10. And indeed, position and momentum eigenstates are not physical and are not
elements of the Hilbert space [CTDL05; Hal13] – they are on its boundary.

11. Also called density matrices, mostly in the context of finite-dimensional systems.
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The key concept in this section is the distinction between two forms of
lack of definite knowledge about the state, leading to probabilistic pre-
dictions: the fundamental quantum uncertainty of a state and technical
(non-fundamental) indeterminacy. The term "uncertainty" to qualify
quantum indefiniteness should remind ourselves of the uncertainty
relations Eq. (2.8), which are a consequence of the quantum formalism.
The choice of "indeterminacy" to qualify technical indefiniteness is
arbitrary. We stick to these terms as markers of the type of indefinite-
ness we are talking about. Both forms of indefiniteness are encoded
in the density operator describing a state.

The ratio of quantum uncertainty to the total indeterminacy of a
state is quantified by its purity ⟨ρ⟩: pure states have purity one and are
exactly the elements of the Hilbert space; states with sub-unit purity
are called mixed and the lesser their purity, the more (technical, in
principle avoidable) indeterminacy it encodes.

Density operators are Hermitian, of trace 1 (trace-class operator),
and semi-positive definite. These properties determine whether a
certain ρ is a well-defined quantum state. The (quantum mechanical)
expectation value of an observable O, given a state ρ, is given by

⟨O⟩ = Tr[Oρ] (2.10)

where Tr[□] is the trace operation.

2.4 quantum dynamics

The unitary quantum dynamics of an operator A in Heisenberg
picture is given by [BP07]

d
dt
A(t) =

i
 h
[H,A(t)] + (∂tA) (t) (2.11)

where H is the Hamiltonian and the last term accounts for the explicit
time dependence of the operator A in Schrödinger picture. The de-
rivations and results in the following are in the Heisenberg picture,
unless otherwise stated. 12

2.5 quantum harmonic oscillators

It is hard to overstate the importance of the harmonic oscillator in
physics and the diversity of models that rely on it. The optomechanical
dynamics we are interested in are described by the interplay of two
harmonic oscillators: a harmonic mechanical motion and a mode of
light; see Ch. 5 where we introduce optomechanical devices. The full

12. In the Schrödinger picture the (unitary) evolution of a state ρ is given by the
Liouville–von Neumann equation [BP07].
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quantum treatment of the harmonic oscillator can be solved exactly
[CTDL05, Ch. V]. We list and discuss here the results most relevant
for our study of entanglement in optomechanical systems.

Consider a massive (quantum) object, whose centre-of-mass motion
is associated with the observables position Q and momentum P (as
introduced in Sec. 2.1 above), and suppose that it is trapped in a
quadratic confining potential V(Q) = Q2k/2 (of strength k). 13 The
restoring force deriving from this potential is linear 14 in Q, which is
the definition of a harmonic motion. Our object is thus a mechanical
harmonic oscillator and its Hamiltonian H is

HHO =
1

2m
P2 +

mω2

2
Q2 (2.12)

where m is the object’s mass and ω =
√
k/m is the oscillator’s natural

frequency (or resonance frequency).

From fundamentally different considerations, the Hamiltonian of a
mode of the electromagnetic field (in the absence of charges) can be
put in the same form as Eq. (2.12); this is the result of the so-called
quantisation of the electromagnetic field; see details in [CTDRG97, Ch. II.
and III.] for example. In this formalism (in the Coulomb gauge), one
finds that the conjugated variables (playing the role of Q and P) are
the cosine and sine components of the complex transverse electric
field; we denote them X and Y and call them "amplitude" and "phase"
quadratures of the light mode. 15 Importantly, X and Y are Hermitian
and they have the same bosonic canonical commutation relation as Q
and P Eq. (2.7)

[X, Y] = i  h. (2.13)

Consequently, modes of light in a cavity or from the free field in a
laboratory are formally equivalent to harmonic oscillator modes.

The quantisation of the electromagnetic field finds that the free
electromagnetic field is a collection of infinitely many (harmonic oscil-
lator) modes characterised by a transverse-mode profile, a direction of
propagation, a polarisation, and a (natural) frequency. In that model,
one understands light propagating in a certain state as the corres-
ponding excitation of the oscillators (modes) making out the light’s
state.

13. In the limit of small displacements, there are many general potentials of
practical interest that are approximately quadratic close to their minima.

14. A note on jargon: quadratic (or harmonic) potentials are sometimes called
"linear" in reference to the equations of motion driven by that force, which is linear in
the operator (or classical dynamical variable) Q.

15. They are not the physical amplitude and (relative) phase of electromagnetic
waves. For coherent light, they approximate phase and amplitude fluctuations
(relevant in the quantum treatment with homodyne or heterodyne measurements)
in the large intensity (or displacement) limit and with appropriately chosen phase
reference (or measurement basis) so that, indeed, X and Y correspond to amplitude
and phase of the state; see [Lou00, Sec. 5.3].
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Hermitian operators, commuting to i  h as above, for a system with
a Hamiltonian of the form of Eq. (2.12), are called quadratures – in-
dependently of the nature (mechanical or electromagnetic) of the
harmonic oscillator mode.

The first step in our study of the quantum harmonic oscillator is to
rescale the (mechanical 16) quadratures as follows

Q =
√

2qzpfq with qzpf :=

√
 h

2mω
(2.14a)

P =
√

2pzpfp with pzpf :=

√
 hmω

2
(2.14b)

where scaling factors qzpf and pzpf carry the units of their respective
variables, and the operators q and p are dimensionless. 17 The sub-
script "zpf" stands for zero-point fluctuations which will be clarified in a
few paragraphs.

For dimensionless quadratures u, v, where u is q for a mechan-
ical (oscillating) mode or x for a light mode (and v is the respective
conjugated quadrature p or y), the commutation relation is

[u, v] = i (2.15)

and Heisenberg uncertainty relation Eq. (2.9) becomes

std[u] std[v] ⩾ 1/2. (2.16)

The Hamiltonian of Eq. (2.12) becomes

HHO =
 hω

2
(
u2 + v2) . (2.17)

We introduce ladder operators a and a† defined as

a :=
u+ i v√

2
u :=

a+ a†√
2

a† :=
u− i v√

2
v :=

a− a†

i
√

2
.

(2.18)

16. The electromagnetic field treatment is a little different and there, X and Y

have the same units [
√

 h] so that X =
√

 hx (and similarly for y); as for example in
[GAC10, Ch. 4]. Conveniently, their definition is independent of the frequency or the
quantisation volume (which enter the electric field amplitude of a single excitation of
the mode

√
 hωk/(ϵ0V); see also [Lou00, Secs. 4.1-4.4].

17. Two comments on the conventions: first, the factor
√

2 at the denominators is
the "optomechanical convention" (cf. [AKM14; Hof15]) and it differs from certain
references (e.g [CTDL05; Lou00]). We will see shortly that this leads to qzpf and pzpf
being the std of the oscillator’s ground state wavefunctions, which is a reference
of choice in the optomechanical context. Second, references to eigenvalues q and
pure eigenstate |q⟩ will be explicitly indicated (and they are rare in the Heisenberg
picture).
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Contrary to the quadratures, they are not Hermitian and therefore
correspond to non-measurable quantities. Their commutation relation
is [

a, a†
]
= 1. (2.19)

The Hamiltonian of a harmonic oscillator (mode) in terms of the ladder
operators is

HHO =
 hω

2
(a†a+ aa†) =  hω(a†a+ 1/2). (2.20)

Because H is not explicitly time dependent, solving the Schrödinger
equation amounts to solving an eigenvalue problem of the form
H |ψ⟩ = E |ψ⟩. The solution of the time evolution and most properties
of the quantum harmonic oscillator can be found from purely algeb-
raic consideration, see [CTDL05, Ch. V] for example. The Hamiltonian
Eq. (2.20) is the system’s energy observable and its eigenvalues are

En =  hω(n+ 1/2), n ∈ N. (2.21)

They come in discreet fashion – in energy quanta – with fixed energy
difference  hω between consecutive eigen-energies. This is different
from the classical treatment of the harmonic oscillator where, given
the stiffness ω of the potential, the possible energy of the oscillator is
a continuum. The Hermitian operator a†a, called the number operator,
has eigenstates |n⟩ [with eigenvalue n in Eq. (2.21)]. {|n⟩ : n ∈ N} are
also the eigen-energy states of the harmonic oscillator and they form
an orthonormal basis of a Hilbert space H called Fock space; the |n⟩ are
called number- or Fock- states.

The state with minimal eigenvalue |n = 0⟩ is the state with the least
energy; it is called ground state or vacuum state because it corresponds
to the absence of energy quanta. The minimal energy of the quantum
harmonic oscillator E0 =  hω/2 > 0 is finite, which is another feature
of the quantum treatment that departs from the classical picture. One
identifies the origin for the additive factor  hω/2 in Eq. (2.20), where it
emerges from the non-zero commutation relation between the ladder
operators.

The effect of this leftover energy of the ground state is best under-
stood when looking at the state’s wavefunction: it is found by solving
the differential equation a |0⟩ = 0, e.g. in position representation. The
modulus squared of the solution |ψ0(Q)|2 is [Gri17; CTDL05]

|⟨Q|0⟩|2 =
(mω
π h

)1/2
e−

mω
 h Q2

∼ N
(

0, q2
zpf

) (2.22)

here in terms of the dimensionful position variable Q of a massive
oscillator. It is a normal distribution N(0, q2

zpf) [MH18, Ch. 6]. This
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means that the ground state of a harmonic oscillator is a coherent
superposition of position eigenstates, normally distributed around the
origin of positions (Q = 0), which is the local minimum of the potential.
The ground state is spread – delocalised – by a standard deviation
std[Q] =

√
 h/(2mω) = qzpf, where we recognised the scaling factor

from Eq. (2.14) which we had called "zero-point fluctuation". One
sees that it characterises the size of the ground state of a mechanical
(harmonic) oscillator in terms of its std in position space. Using
that the Fourier transform of the wavefunction gives the momentum
representation Eq. (2.6), and that the Fourier transform of a Gaussian is
again a Gaussian with inverse variance, one finds for the conventions
adopted here that

|ψ0(P)| ∼ N
(

0, p2
zpf

)
. (2.23)

We clarify here that the model we study describes the centre-of-
mass motion of a massive harmonic oscillator, so that we are speaking
about the position of the single point corresponding to the object’s
centre-of-mass. We just established that in its state of absolute minimal
energy the centre of mass is normally distributed and delocalised in
position and momentum.

Converting the exponent of the Gaussian functions of Eqs. (2.22)
and (2.23) to dimensionless units with Eqs. (2.14) yields the same
Gaussian distribution of both dimensionless position and momentum
eigenstates forming the ground state

|⟨q|0⟩|2 = |⟨p|0⟩|2 ∼ N(0, 1/2). (2.24)

In dimensionless units, all the results above apply formally whether
one speaks of harmonic oscillators that are of (massive) mechanical
nature or of (massless) electromagnetic nature.

In terms of the Heisenberg uncertainty relation Eq. (2.9), the stand-
ard deviation of the ground state of the harmonic oscillator are
std[Q] = qzpf and std[P] = pzpf and one finds that it saturates the
bound

std[Q] std[P] = qzpfpzpf =  h/2. (2.25)

And similarly in dimensionless units std[q] std[p] = 1/2, cf. Eq. (2.16).
This means that the uncertainty in position and momentum are min-
imised simultaneously – in this sense, the ground state is a minimal
uncertainty state.

2.6 entanglement

We introduced mechanical and electromagnetic harmonic oscillators,
which are the systems forming the optomechanical devices we study.
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The second ingredient at the centre of our attention is entanglement,
more specifically opto–mechanical entanglement that can exist between
light and mechanical motion. Entanglement entails superpositions of
correlations between two or more systems; these correlations emerge
from the formalism of quantum mechanics and they lead to observable
effects that are, in general, incompatible with classical theories.

In this work we consider bi-partite entanglement, that is entangle-
ment between exactly two systems. 18 The two entangled systems can
themselves have some internal structure and be composed of several
sub-systems; we do not treat or assess entanglement within these
sub-systems.

Bi-partite entanglement is defined as follows [Wer89; GT09; ARL14;
Hor+09]. Consider two systems, labelled 1 and 2, with respective
Hilbert spaces H1 and H2. A (joint) state of the two systems is a
density operator ρ12 on the joint Hilbert space H12 = H1 ⊗H2 (tensor
product of Hilbert spaces). The state ρ12 is called separable if there
exists cm ⩾ 0 and states ρm1 ∈ H1, ρ

m
2 ∈ H2, with m = 1, . . . ,M and∑M

m=1 cM = 1, such that

ρ12 =

M∑
m=1

cmρ
m
1 ⊗ ρm2 . (2.26)

ρ12 is entangled if it cannot be written in this way. Note that M is not
related to any parameter of these systems, in particular, not to the
dimensions of the Hilbert spaces.

It is useful to distinguish a sub-class of separable states called product
states: they are those states where c1 = 1 and all other coefficients
are zero. Physically, product states describe uncorrelated systems, e.g.
where both ρ1 and ρ2 were produced independently, thus encoding no
information in their joint state. The more general separable states (with
several different and non-zero cms) encode some non-fundamental
(classical) correlations; e.g. quantifying which pairs of separable states
ρm2 and ρm1 are most probable.

Given a state, it is hard in general to check whether it is entangled or
not [GT09]. Rather than demonstrate that a certain state can or cannot
be written as Eq. (2.26), one uses entanglement tests. It is (typically) a
function f of the (joint) state ρ that returns a real number. When this
number is below a certain threshold s – called separability bound – then
the state is entangled

f(ρ) < s =⇒ ent. (sufficient test) (2.27)

f(ρ) < s⇐⇒ ent. (necessary and sufficient test). (2.28)

18. Entanglement among more than two parties – multi-partite entanglement – has
a rich but complicated structure that we do not touch upon. The interested reader
can have a look at [GT09; Hor+09; HE06; EG06] for example.
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An example of entanglement test is the so-called positive partial trans-
pose (PPT) criterion that was first proposed for finite-dimensional
systems (like spins) by A. Peres and the Horodecki family [Per96;
HHH96; Hor+09; GT09]; it was generalised later to continuous vari-
ables by R. Simon [Sim00; WW01; ARL14] which is relevant for our
work and which we will present in detail in Sec. 3.4.

If the function f fulfils certain salient mathematical features (see
[GT09, Sec. 4] for details) so that it provides an ordering of the en-
tangled states, then it is called a measure of entanglement. With such a
measure function, one can rank states as being more or less entangled
compared to each other so that it makes sense to speak of the amount
of entanglement in a certain state [GT09; Hor+09]. In this work, we
use the logarithmic negativity, which is an entanglement monotone [Ple05],
to quantify Gaussian entanglement [VW02]; it is particularly simple to
use and to compute (being a tremendous advantage) and works fine
as an entanglement quantifier for our purposes.

Tests and measure functions, as in Eq. (2.27), require full knowledge
of the state ρ. In practice, one might have an idea about the state
in an experimental setup (e.g. because it has been modelled, its
preparation is well known, etc.), but it is rarely true that one knows
it for sure – unless one characterises it completely with a "full-state
tomography", which is not always possible and/or experimentally
difficult. Alternatively, one can use entanglement witnesses, which are
tests explicitly based on a set of measurements (that do not fully
characterise the state). An entanglement witness is an observable W
constructed in such a way that a state ρ is entangled whenever the
expectation value of W is less than a separability bound s, similar to
Eq. (2.27) above. Formally, one writes

w = ⟨W⟩ = Tr[ρW] < s =⇒ ent. (2.29)

and we call the number w the witness value. They take the form of a
sufficient test. Importantly, they are not based on the knowledge of
ρ because ⟨W⟩ is the result of the measurement procedure specified
by W. For instance, the CHSH inequality, used to demonstrate Bell
non-locality with entangled states, is a witness test of entanglement
[GT09]. In the following, will study the EPR-variance, which is a
witness based on second moments [HE06], see Sec. 3.4.
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E L E M E N T S O F C O N T I N U O U S - VA R I A B L E S
F O R M A L I S M

A continuous-variable system is characterised by observables with
infinitely many possible outcomes – the measurable variable is thus
"continuous". An operator with infinitely many eigenvalues operates
on a Hilbert space of correspondingly infinite dimensions. Position
and momentum observables – i.e. quadratures – have continuous
spectra of eigenvalues; they are continuous variables. The harmonic
oscillator is thus an example of an infinite-dimensional continuous
variable system, and the Hilbert space is the Fock space; cf. Sec. 2.5.
More details can be found in standard reviews like [BL05; AI07;
Wee+12] or textbooks like [Sch01].

3.1 quantum phase space

infinite-dimensional systems are conveniently described via the
phase space formulation of quantum mechanics – which is a consistent
quantisation method [CFZ14]. 1 States in the infinite-dimensional Hil-
bert space of a single, continuous-variable system (mode) are mapped
onto the space of 2-dimensional real functions. This representation
of quantum states shares striking similarities to classical statistical
physics in phase space: in this sense, this looks like a simplification.

In classical physics, the phase space (or configuration space) of a
1-dimensional degree of freedom is R2 with axis corresponding to the
dynamical variables (e.g. position and momentum); a point in phase
space thus corresponds to a configuration of the system. The phase
space also supports a probability distribution of configurations that
models some lack of knowledge about the state (indefiniteness). As
mentioned in Ch. 1, in classical models there is nothing fundamental
in the probabilistic description of a state (i.e. its indeterminacy) in
the sense that there is no limitation to how well one can know the
configuration/state of the system in principle – a single point in phase
space (or its generalisation to a Dirac-delta distribution) is a valid
classical state. Quantum states, on the other hand, are fundamentally
uncertain and (quantum) phase space provides a useful formalism to
represent this indefiniteness – which is at the centre of this work.

1. Finite dimensional systems can also be described on an appropriate phase
space, see for example [Til+16; Run+19].

23
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Consider a continuous-variable system of M (bosonic) modes de-
scribed by the tensor product of Hilbert spaces H =

⊗M
j=1 Hj, where

Hj is the Fock space of mode j. The dimensionless 2 canonically
conjugated quadratures of each mode are arranged in a 2M-vector

r := (q1, p1, q2, p2, . . . , pM)T (3.1)

so that the canonical commutation relations take the form 3

[
rj, rk

]
= iΩjk, Ω :=

M⊕
k=1

(
0 1

−1 0

)
. (3.2)

Ω is a 2M-by-2M matrix called the symplectic form.

Any state ρ is represented in phase space by the Wigner function

W(r) :=
1

(π h)M

∫∞
−∞ dMq ′ 〈q−q ′∣∣ ρ ∣∣q+q ′〉 ei 2

 hq ′·p. (3.3)

It is a particular Wigner-Weyl map [CFZ14; AI07; Sch01] between
the space of density operators on H and functions on phase space
R2M. The map is faithful so that W is a complete and unambiguous
representation of ρ, for all ρ. The Wigner function is not the only
possible faithful representation of states on R2M: other well-known
representations are the Glauber–Sudarshan P-function and the Husimi
Q-function; see [GZ00, Ch. 4] for details. We stick to the Wigner func-
tion in the following because it was constructed to mimic probability
distributions of (classical) statistical mechanics [GZ00].

Wigner functions (and actually all state representation functions in
phase space) are quasi-probability distribution; this makes clear that, in
general, a quantum state representation in phase space is not compar-
able to a classical probability distribution in phase space. Nevertheless,
they have three mathematical properties that motivate the association
with probability distributions, although they are not. Firstly, they are
normalised∫

d2MrW(r) = 1. (3.4)

Second, the marginalsm(rj) ofW along any phase space coordinate rj,
j = 1, . . . , 2M, are probability distributions, just like the marginals of
a multi-variate probability distribution. They provide the probability
of measurement outcomes of the observable rj given the state ρ

m(rj) =

∫
d2M−1r ′W(r ′, rj) =

〈
rj
∣∣ ρ ∣∣rj〉 . (3.5)

2. For mechanical oscillator modes, recall the scaling factors from Eqs. (2.14).
3. Many conventions are possible here: we use those introduced in Ch. 2, they

are the same as in [Sim00] for example.
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Lastly, (quantum) expectation values are obtained from W in form-
ally the same way as mathematical expectations are defined from a
probability distribution: for an observable A

⟨A⟩ =
∫

d2MrA(r)W(r) (3.6)

where A(r) is the operator’s Wigner representation (replace ρ by A in
Eq. (3.3)). For example, expectation values of quadratures are

〈
rj
〉
=

∫
d2Mr rjW(r) (3.7)

where rj is an operator on the lhs and a real number (phase space
coordinate) in the integral. The Wigner representation is associated
with the symmetric 4 ordering of non-commuting operators [AI07]: for
instance, the Wigner representation of the operator A = q2

jpjpk is the
symmetrised A(r) = (q2

jpjpk + qjpjqjpk + pjq
2
jpk)/3.

Importantly, quantum mechanics is not equivalent to statistical mech-
anics and this is partly encoded in the mathematical properties of W:
prominently, W can take negative values, which is incompatible with it
being a probability distribution. In fact, except for the important class
of Gaussian states introduced in the next section, the Wigner function
of all other pure states is negative-valued [Hud74]; for mixed states,
the Wigner function can be positive and non-Gaussian in general.

3.2 gaussian states

Gaussian states are the class of states whose Wigner function is a
multivariate Gaussian

W(r) =
exp

(
−(r− µ)Tσ−1(r− µ)/2

)
(2π)M

√
det |σ|

∼ N(µ, σ). (3.8a)

Here µ is the 2M-vector of means and σ is the 2M-by-2M matrix of
symmetrised (co-)variances 5

µ := ⟨r⟩ (3.8b)

σ :=
〈
rrT

〉
sym − µ2, with

〈
rjrk

〉
sym :=

1
2
〈
rjrk + rkrj

〉
. (3.8c)

σ is a central quantity to the coming developments and we call it the
covariance matrix. As in probability theory, σ is symmetric and positive
definite. A normal distribution is entirely characterised by µ (1st
moments) and σ (2nd moments); hence, Gaussian states are entirely

4. The P-representation is associated with normal ordering and the Q-function
with anti-normal ordering [AI07].

5. Mind that in the literature, σ is often the std of a variable (with variance σ2); cf.
[MH18, Sec. 6.7].
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defined by 2M+ 2M(2M− 1) real numbers – a rather economical way
of describing infinite-dimensional states.

Gaussian states are those states that are most accessible in practice.
In Fig. 3.1, we plot the Wigner function of some relevant ones, namely:
thermal, coherent, vacuum, and squeezed states. Examples of non-
Gaussian states are Fock states |n > 0⟩; see Fig. A.2. Appendix A
provides details on states particularly useful for the considerations in
this work.

Because the Wigner function of Gaussian states is positive, it is a
(true) probability distribution, directly comparable to a distribution
describing states in (classical) statistical mechanics. 6 In this sense,
Gaussian quantum states are formally not different from indeterminate
classical states. Because we aim at demonstrating entanglement –
which, by all accounts, requires a genuinely quantum correlation
between the systems – it is important to clarify what is "quantum",
what is "classical", and why.

In Sec. 2.2, we related quantum state uncertainty to the non-com-
mutation of observables Eq. (2.8). In the phase-space representation,
uncertainty relations imply that the marginals of the Wigner function
for incompatible variables cannot be too narrow simultaneously. The
uncertainty relations are expressed as a constraint on the covariance
matrix [Sim00; AI07]

σ ⩾ −
i
2
Ω (3.9)

where Ω is the symplectic form defined in Eq. (3.2). The uncertainty
relation Eq. (3.9) is general and applies to any state – also to non-
Gaussian states with higher moments.

The Wigner functions in Fig. 3.1 provide a pictorial account for the
uncertainty relation of Gaussian states in phase space: the symmetric
spread (in dimensionless units) of the coherent (including the vacuum)
states saturates the uncertainty bound, hence it is the smallest achiev-
able spread of both conjugated quadratures at once (i.e. minimal
uncertainty states). The squeezed state on the other hand is a trade-off
where more accuracy along one direction must be compensated by
more uncertainty along an orthogonal direction. 7 Classically inde-
terminate states are not restricted in that way and can be arbitrarily
peaked – corresponding to the classical assumption that a state (or
configuration) can be certain.

The uncertainty constraint Eq. (3.9) thus limits the set of Wigner
functions of Gaussian quantum states to a sub-set of all possible
classical states with normal distributions. This situation is at odds with

6. In fact, all phase space representation functions (P or Q for example) of Gaus-
sian states are normal distributions [AI07].

7. The volume of the Gaussian blob is fixed: like a closed tube of mayo, if you
squish it one way, it must expand the other way.
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Figure 3.1 A collection of Gaussian states represented by their Wigner function
W(q, p). In black are the std ellipses of the corresponding bi-variate distribution;
the dashed blue circle is the std of the vacuum for comparison. The coherent
state’s displacement is α = 2 eiπ/3, the squeezing parameter is ξ = 0.5 eiπ/2 and
the occupation of the thermal state is nth = 1. The colour scale is the same for
all plots. The Wigner functions were generated with the Python library Qutip
[JNN12; JNN13].

the expectation that quantum mechanics is the more general theory
from which classical mechanics "emerges" in some limit. This is one
of the reasons why it is hard to argue that observing a certain feature
of a Gaussian state is the witness of a quantum phenomenon: one can
always come up with a classical statistical model that reproduces that
result.

We are now in a position to make a statement about what is quantum
and what is not in this work: the marker of quantumness for Gaussian
states is that the variance of a generalised quadrature be less than
that of the vacuum state (or a coherent state) – i.e. squeezing corres-
ponding to quantum correlations between quadratures. Quantumness
comes from acknowledging the fundamental uncertainty relation be-
tween non-commuting observables Eq. (2.8). Importantly, while there
are works that support this definition in rigorous and quantitative
terms, see [RSV17] for instance, other works, like [Cat+23], have a
different stance and will say that classicality is equivalent, roughly, to

https://qutip.org/
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local-realism and there are local-realistic theories with mechanisms
reproducing uncertainty relations.

3.3 gaussian dynamics

We turn now to the physical processes that leave Gaussian states
Gaussian – they are called Gaussian maps. These maps describe
unitary evolution, fluctuations and dissipation, and measurements;
see [EP03; Wee+12; Hol21].

Unitaries preserving the Gaussian character of states are generated
by Hamiltonians that are at most second order in the operators

H = rTAr+bTr+ c. (3.10)

For M modes, r is the 2M-vector of Hermitian quadratures Eq. (3.1),
A is a 2M-by-2M Hermitian matrix, b is a real 2M-vector, and c is
a real constant. At the level of phase space representations, these
unitaries are exactly the linear transformations S (square 2M matrices)
that leave the symplectic form Eq. (3.2) invariant: STΩS = Ω. This
is the defining property of symplectic transforms that leave Gaussian
states Gaussian.

The dynamics in Heisenberg picture are given by the Heisenberg–
von Neumann equation Eq. (2.11), whose equations of motion for
quadratic Hamiltonians Eq. (3.10) are linear in the operators. 8 The
constant term c commutes with the operators, hence it has no (direct)
influence on the dynamics. The linear term bTr leads to generalised
displacement dynamics that shifts the 2M first moments of the state;
see App. A.3 for details on the displacement operator. In the following,
one will assume that the trajectories of the first moments are known
(or have been computed already) and we place ourselves in a displaced
frame that is constantly shifted with the opposite displacements so that,
effectively in our description, the state’s first moments remain zero at
all times [AI07; AKM14]. In this frame, the Wigner function remains
centered at the origin and Gaussian states are entirely described by
their covariance matrix. For that reason, we will often refer to the
covariance matrix of a Gaussian state as being the state. Therefore,
only the quadratic terms in Eq. (3.10) are relevant for Gaussian unitary
dynamics in what follows.

The quadratic Hamiltonian terms rTAr describe two physical op-
erations on the state’s 2nd moments: beam splitters and squeezers.

8. See also [BYZ94] for an interesting and detailed comment on the difference
between classical and quantum dynamics in phase space. Especially, they clarify that
Ehrenfest theorem relates the quantum trajectories (that is the evolution of the first
moments) to those of a definite (Dirac-delta) classical state. They argue that it is
more relevant to compare time-evolved (measurable) moments of classical probability
distributions (according to Liouville’s equation) and of the Wigner function.
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They are conventionally defined in the ladder operator basis (use
Eq. (2.18) to convert r into a vector of ladder operators). For M modes,
j, k = 1, . . . ,M:
• beam splitter (BS) interaction Hamiltonian

HBS := ηaja
†
k + η∗a†jak (3.11)

coherently distributes the excitations (energy) between each mode
[VW94; GAC10]. The beam splitter applied to coherent states
famously yields a separable output. 9 The transformation is pass-
ive because it does not change the total number of excitations in
the system. It describes physical beam splitter devices [HOM87;
VW94] which is an essential building block of (quantum) optical
experiments. When acting on the same mode j = k, then the opera-
tion is a phase shift on mode j – which is the free evolution of the
corresponding harmonic mode Eq. (2.20).

• two-mode squeezer (TMS) interaction Hamiltonian

HTMS := ξaiaj + ξ∗a
†
ia

†
j (3.12)

creates and annihilates excitations on modes j and k simultan-
eously; see for example the form of the two-mode squeezed state
Eq. (A.23) [CS85; SC85]. This transformation is called active be-
cause it changes the total number of excitations in the system (cf.
Sec. A.4). When acting on the same mode j = k, then the operation
is a single-mode squeezer.

In Sec. 5.3.1, we will see that both of these unitary operations
arise in the linearised optomechanical interaction, and our scheme to
detect optomechanical entanglement uses them. For now, we simply
highlight that the "quantum" operation (or resource), when working
with Gaussian states, is the squeezing operation [WEP03; EP03]. Of
particular interest to us, the two-mode squeezing operation generates
an entangled Gaussian state from the separable vacuum state [AI07;
EP03]. This is in essence "where" entanglement comes from; see also
[Kim+02] where they find that (roughly speaking) if the degree of
squeezing below the vacuum level compensates the degree of thermal
mixedness, then the output is entangled. The limit of an infinitely two
mode squeezed state is the famous EPR-state [EPR35].

Non-unitary, open dynamics from the interaction of the (Gaussian)
system with one or more environments lead to fluctuations and dis-
sipation; see Ch. 4 where we discuss and model open systems. Under
the general condition that the coupling to the bath is at most quadratic
and that the state of the bath leads to a normal distribution underlying
the associated fluctuations, then the state of the system will remain
Gaussian [Wee+12; SC07].

9. This is the only example I know of unitary multi-mode dynamics of pure states
that remains separable. In Ref. [Kim+02] they treat more general cases of squeezed
and thermal inputs on a beam splitter.
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Measurements affect states, and we restrict ourselves to only those
measurements that leave Gaussian states Gaussian. These are the
measurements of linear combinations of quadratures [Wee+12; SC07]
like homodyne or heterodyne detection; see App. F for details of these
detection methods.

3.4 bi-partite gaussian entanglement tests

The prototypical (bi-partite) entangled pure Gaussian state is the
two-mode squeezed state and Gaussian entanglement is essentially
(single mode) squeezing distributed over the parties [EP03; Wee+12];
see also Appendix A.5 where we give details about two-mode squeezed
states. Therefore, in the context of this thesis, testing for entangle-
ment amounts to finding squeezing of the uncertainty of generalised
quadratures below the reference uncertainty of the system’s vacuum
state [HE06]. We introduce here the entanglement tests used in the
following.

The theoretical description and model of the protocol presented
in Part ii consider entanglement between exactly two modes: this is
termed the 1 + 1-modes bi-partite configurations. In the analysis of
experimental data (discussed in Part iii) it is possible to account for the
more complex M1 +M2 bi-partition, i.e. where one partition contains
M1 modes and the other M2 modes. Call M = M1 +M2 the total
number of modes. Denote r the 2M-vector of quadrature coordinates
Eq. (3.1). The 2M1 quadratures of the first party come first and the
2M2 quadratures of the second party come second, which defines
the bi-partition of the state. 10 Gaussian entanglement is entirely
characterised by the 2M-by-2M covariance matrix of the states [AI07;
HE06].

3.4.1 EPR-variance

The EPR-variance 11 test is defined for 1+ 1-mode systems and takes
the form of

∆EPR := var
[
x1 + x

θ
2
]
+ var

[
p1 − p

θ
2
]

(3.13)

with

rθ2 =

(
xθ2

pθ2

)
=

(
cos(θ) sin(θ)

−sin(θ) cos(θ)

)(
x2

p2

)
= U(θ)r2

10. This is the convention in the references used here.
11. Named in reference to the measurement and the state introduced in Einstein,

Podolski, and Rosen’s important article [EPR35] on the completeness of the quantum
theory.
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where U(θ) is a local rotation on the second mode. It is a sufficient
(but in general not necessary) test for entanglement:

∆EPR < 2 =⇒ ent. (3.14)

The separability bound is 2 here so that the (joint) vacuum state
saturates it; cf. Sec. 2.5 and App. A.1.

The EPR-variance is a sum of correlators of observables, hence
it belongs to the class of witnesses based on second moments [HE06].
Formally, it can be written in a form strongly evocative of standard
entanglement witnesses [cf. Eq. (2.29)], in terms of the covariance
matrix σ of a state

∆EPR = Tr[WEPRσ] . (3.15)

WEPR is a real matrix that describes how the (measurable) second
moments are combined to form the witness. The EPR-variance is a
special case of the Duan-criterion [Dua+00]. In its necessary and suffi-
cient formulation,‘ the witness matrix of the Duan-criterion WDuan(σ)

depends on the state – in this sense, it is not a witness. On the other
hand, WEPR is fixed, up to a parameter ϕ that can be tuned, but not in
a way that ∆EPR becomes necessary for entanglement.

∆EPR is a well-known entanglement test with an interpretation in the
spirit of the EPR-argument [EPR35]: it assesses whether the positions
of both parties are anti-correlated [thus reducing the first term on
the rhs in Eq. (3.13)] and the momenta correlated [thus reducing
the second term on the rhs in Eq. (3.13)]. 12 Effectively, the EPR-
variance checks whether, in the 2-dimensional sub-space spanned by
(x1 + x

θ
2 ) and (p1 − p

θ
2 ), the state is squeezed below the vacuum state

extension along both directions. The entanglement test recognises that
this is a special thing by acknowledging the fundamental limit in
quantum uncertainty. 13 See also Fig. A.5 for a (nice) depiction of EPR-
entanglement and testing. In our work, the advantage of using the
EPR-variance is its mathematical simplicity, allowing us to compute
explicit expressions analytically.

3.4.2 Optimised witnesses based on second moments

The Duan-criterion can be extended to states involving more than
two modes. In [HE06] they demonstrate that, given the covariance

12. In [EPR35] they considered the correlated positons and anti-correlated momenta
corresponding to the case θ = π/2 in our definition Eq. (3.13).

13. In their famous argument against the completeness of quantum mechanics
[EPR35] Einstein, Podolski, and Rosen did not question the existence of these cor-
relations. They used such a two-system (EPR-) correlated state to show that their
definition of "being and element of reality" was incompatible with the assumption
that the wavefunction provides a complete description of a state.
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matrix of a state (not necessarily Gaussian) with bi-partite M1 +M2-
modes structure, it is possible to efficiently 14 find the optimal witness
matrix Wopt that minimises Tr

[
Woptσ

]
; and when the result of this

expectation value is below the associated separability bound (e.g. 2,
like in the ∆EPR) then this implies entanglement. For M1 +M2-modes
Gaussian states, this test is also necessary for entanglement.

It is thus the test one uses in the analysis of experimental data
in Part iii where the M1 +M2 structure is relevant for the so-called
multi-mode evaluation procedure we used. Entanglement tests that
are optimised for a given state can introduce to biases (e.g. due to
imperfection of the state estimation). We adapt the optimisation and
testing to mitigate that bias; discussions and details are provided in
Sec. H.8.

3.4.3 PPT-criterion for continuous variables

The positive partial transpose (PPT) criterion testing for entangle-
ment in finite-dimensional systems [Per96; HHH96; Hor+09; GT09]
can be extended to infinite-dimensional (continuous-variables) sys-
tems [Sim00]. The test consists in taking the partial transpose of a
bi-partite state with respect to one of the parties and then checking
whether the resulting operator is still a "bona fide" state. If it is not,
then this is sufficient (but in general not necessary) for entanglement.
For a M1 +M2-mode continuous-variable system, with covariance
matrices σ, the partially transposed state with respect to the first party
is [Sim00; AI07]

στ1 = θ1σθ1, with θ1 = diag(1,−1, 1, . . . ,−1︸ ︷︷ ︸
2M1 entries

, 1, 1, . . . , 1︸ ︷︷ ︸
2M2 entries

). (3.16)

The partial transposition with respect to the second party is defined
analogously. στ1 is a ("bona fide") state if it fulfils the Heisenberg un-
certainty relation Eq. (3.9): if it does not, then it is bi-partite entangled
[Sim00]. Formally, we write

2στk < −iΩ =⇒ ent. (3.17)

for k = 1 or 2. The one directional arrow indicates that the PPT-
criterion is only sufficient in general, but if the bi-partition structure
is M1 = 1 and M2 = M− 1, then it is necessary and sufficient for
entanglement [WW01; AI07]. 15

The PPT entangelment test Eq. (3.17) can be expressed in terms of
symplectic eigenvalues. Every covariance matrix can be diagonalised by

14. Semi-definite optimisation problem with polynomial complexity.
15. If the state has additional symmetries, there are cases with M1,M2 > 1 for

which the criterion is also necessary and sufficient [AI07]. These cases are not relevant
to our analysis.
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the symplectic transformations (recall that they correspond to the unit-
aries that leave Gaussian states Gaussian, cf. Sec. 3.3). The diagonal
elements of the thus diagonalised matrix are the symplectic eigenvalues
denoted {νj}

2M
j=1: they are the regular eigenvalues of |iΩσ|. 16 The

Heisenberg uncertainty bound implies that the symplectic eigenvalues
(their magnitude) of states are ⩾ 1/2 (also for non-Gaussian states).

Call {ντj }
2M
j=1 the symplectic eigenvalues of the partially transposed

στ and the smallest eigenvalue of that set ντ− := minj

[
ντj

]
. Then

Eq. (3.17) is equivalent to

ντ− < 1/2 =⇒ ent. (3.18)

In the 1 ×M− 1-mode scenario, where the PPT-criterion is necessary
and sufficient, at most one of the ντj can be less than 1/2 [AI07].

3.4.4 Logarithmic negativity

When M1 = 1 (or M2 = 1) so that the PPT-criterion is necessary
and sufficient, it seems intuitive to associate "more entanglement"
with states with smaller symplectic eigenvalues. It makes ντ− a good
candidate for ranking entanglement states and building an entangle-
ment measure. The logarithmic negativity function (logneg for short) is
defined as [VW02; AI07]

logneg[σ] := max
[
0,−ln

(
2ντ−

)]
. (3.19)

It is an entanglement monotone (and not a measure) [Ple05; AI07]
but for all practical purposes in this thesis, we use it to quantify
entanglement.

The relation between the PPT-criterion and the logarithmic neg-
ativity (via the minimal symplectic eigenvalue) suggests that larger
violations of a separability bound in other tests or witnesses (like
∆EPR) are associated with stronger quantum correlations or "more
entanglement". Generally speaking, it is discouraged to think this way
because measures (or monotones) must fulfil mathematical properties
that enable quantitative statements. However, when dealing with
Gaussian states, the violation of the optimal witness is a lower bound
on the logarithmic negativity, so that a larger violation of the witness
might involve more entanglement in that sense [HE06, Sec. 6.3]. For
non-Gaussian states, the matter is more complicated, but the reasoning
remains valid, and as they put it in [HE06, sec. 6.3]: "a state that very
much violates this criterion [the optimised witness] is also very much
entangled".

16. Symplectic eigenvalues come in pairs, so that there are at most M different
ones. They are different from the (regular) eigenvalues of the matrix in general. |□| is
the absolute value of the eigenvalues and not the determinant of the matrix.
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E L E M E N T S O F O P E N - S Y S T E M S D Y N A M I C S

In the framework of this thesis, we can agree that the "interesting"
systems are observable in some way (which is a rather positivist view
point). Then, an observer is in a position to provide a description
of a system based on observations. 1 Observation/measurement of
the system updates the information the observer has about the state,
and, according to the quantum formalism, the update looks like a
disturbance of the state, in general. In this sense, from the point
of view of an observer, a quantum system is disturbed (in the most
general case) because the observer is aware of its existence through
observations. 2

More generally, the effect of noise on a quantum system can be
interpreted as updates of the observer’s knowledge about the system
– its state. And similarly, measurement results update the observers’
knowledge according to the rules of quantum mechanics. It is the same
in classical statistical mechanics or thermodynamics. The difference
from the quantum description are the updating rules. Prominently, in
classical mechanics there are no tread-off requirements upon gaining
information about a certain observable – in principle, measurements
in classical physics always lead to improved overall information about
the system.

Noise and disturbances affecting a quantum (or a classical) system
(from the outside) are often modelled as interactions with external
systems that form an environment. These environmental systems are
characterised by the limited knowledge and control an operator has of
them. The interactions with the (partially) unknown and uncontrolled
environment affect the system in a partly unknown manner that we
call noise. A system interacting with an environment is called open. In
the quantum case, perturbations or noises of two distinct nature need
to be accounted for: the ones resulting from measurements and those
resulting from interactions with uncontrolled and unknowable other
systems.

1. A lecturer at a the VCQ summer school 2020 asked the audience if they could
think of a method to "detect", in some sense, a system that is not interacting at all (the
context was a lecture on quantum gravity and dark-matter). They said they would be
interested in such a scheme. Someone mentioned detection via the absence of signal.

2. I should clarify that in many relevant situations (theoretical or experimental)
isolated system model provide accurate and useful predictions. Moreover, in certain
cases, quantum measurements do not disturb the state (e.g. when the system is
already in an eigenstate of the observable, which is common in protocols involving
finite-dimensional systems).

34
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In this work, the close link between measurement and noise is
understood according to the theory of decoherence [Sch05; Sch07; Sch19;
Zur81; Zur03; Zeh70; Zeh73; JZ85]. Decoherence is a mechanism that
prevents the observation and experience of most states of a Hilbert
space at our human scale; it explains the loss of quantum features
(e.g. coherence) and the emergence of classical (i.e. non-quantum)
behaviours. A decoherence model is essentially an open-system model;
and depending on how information flows with respect to an observer,
it models noise or measurement.

Central in mainstream models of decoherence, the system under
consideration becomes entangled with systems of its environment.
The information in these correlations is either obliterated (in the de-
scription), thus corresponding to noise, or it is channelled (transported
and amplified) to the observer in the form of a measurement result
[VN96; Zur81; Zur82; WM09; Lam18]; recall also our introductory dis-
cussion of an optomechanical position sensor in Sec. 1.4. 3 I personally
like to think of measurements as "controlled decoherence" where some
knowledge about the system is obtained (or saved from obliteration);
or, conversely, decoherence is a set of measurements whose outcomes
are ignored. Seen as an environment, a measurement apparatus is
actually known and controlled (well enough).

Optomechanical cavity devices are coupled to two different environ-
ments: one for the mechanical oscillator mode and one for the cavity
mode. The typical mechanical oscillators we have in mind in this work
are mirco- or nano- fabricated devices whose elastic deformations/vi-
brations form the harmonic mode [Cle03; Gä20; Ber22; EBK24]. 4 These
vibrating devices are clamped to a bulk substrate which corresponds
to the mechanical environment. A description of the bulk – its precise
state and its interaction with the mechanical mode of interest – is
prohibitively complex to provide fully and we resort to a simplified
open-system model that leads to accurate theoretical predictions in all
the regimes we treat in this document [AKM14].

The environment of the cavity is the free electromagnetic field out-
side of it. Contrary to bulk matter, the state of the free light field can be
derived from first principles (it is the quantisation of the electromag-
netic field without charges; see [CTDRG97, Ch. II and III] for example),
we thus have an analytical model for that environment. In our model,
the cavity and its environment are part of the measurement apparatus

3. Note that the theory of decoherence provides explanations for several deep
and important questions relating the quantum description to human everyday-life
experience of the macroscopic (classical) world. Importantly, it does so within the
quantum framework using the dynamics and Born rule [Sch05; Sch19].

4. Many of the results and considerations in this thesis apply to macroscopic
devices like the suspended mirrors of LIGO and Virgo. But massive, low-frequency,
mechanical oscillators are typically subject to non-Markovian correlated noises, which
are not treated in this work. See for example our study of optomechanical entangle-
ment in LIGO-like devices subject to coloured noise in [Dir+24].
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that monitors the position of the mechanical oscillator. A particular set
of modes of the cavity environment are measured by a photodetector –
here, photodetection corresponds to retrieving information from the
environment. Then the free-field state and dynamics allow us to draw
a comprehensive picture of what happens in this quantum measure-
ment (up to the point where the light itself is measured); recall Fig. 1.5
of a position sensor where the Heisenberg–von Neumann cut is in
front of the photodetector.

From this perspective, the two environments of cavity optomech-
anical devices have different roles. On the one hand, the mechanical
environment is hard to model and must be approximated; it is also
inaccessible and all information shared with it must be considered
lost. The environment of the cavity, on the other hand, bears a well
established model and it is (partly) measured so that it is part of the
quantum measurement apparatus monitoring the mechanical motion.

In the remainder of this chapter, we introduce a formalism to model
the optomechanical state in the presence of the two environments. We
provide equations of motion for the quadratures of the cavity and a
mechanical mode in Heisenberg picture. These equations are called
quantum Langevin equations (QLE) because they have the same form as
the classical ones [GZ00]. 5 The QLE are well suited to describe the
protocol we propose and lead to exactly solvable dynamics.

4.1 system–environment paradigm

Consider a system of interest and its corresponding Hilbert space
HS. Then consider an appropriately chosen environment with Hilbert
space HE. In this work, we assume environments coupled weakly
to the system and that are large (i.e. with effectively infinitely many
degrees of freedom and dense energy spectrum) [GZ00, Sec. 3] [BP07,
Sec. 3.1]. Such environments are also called baths, as in thermody-
namics. In that limit, one can assume that the interaction with the
system leaves the state of the bath unchanged [BP07, Sec. 3.3.1] and
that the latter has no memory: i.e. all excitations or information
from the system is "carried away rapidly into the environment and
never comes back" – this is the obliteration of information mentioned
above. This memoryless property of the environment is mathemat-
ically characterised by the limit of arbitrarily short correlation times

5. We note the important alternative approach in the Schrödinger picture that
leads to a master equation. Its derivation traces out the environmental degrees of
freedom, which makes the obliteration of the environment particularly explicit. For
derivations and usage of the master equations, the reader is directed to [BP07; WM09].
There are convenient and accessible software to perform computations, for instance
the python library Qutip [JNN12; JNN13] or the library QO in Julia [Krä+18].

https://qutip.org/
https://qojulia.org/
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within the environment [BP07, Sec. 3.3.1]: an operator e of a bath is
delta-correlated in time〈

e(t)e(t ′)
〉
∝ δ(t− t ′). (4.1)

They lead to uncorrelated perturbations of the system in the form of
white-noise, and we call such environments Markovian.

In this work, the systems will be a cavity and a mechanical mode, i.e.
continuous-variable bosons, cf. Ch. 3. Similarly, we assume bosonic
baths: e.g. the phonons (quanta of vibrations) of the substrate holding
the mechanical oscillator and the photons of the free light field around
the cavity. Finally, we assume that the baths are in thermal states
characterised by Bose-Einstein distributions of energies; see Sec. A.6
for details on thermal states. Then we speak of thermal baths [BP07,
Sec. 3.1.3].

We associate internal Hamiltonians HS and HE to both system and
environment, respectively. The interaction between them is modelled
with a Hamiltonian HI. Importantly, we restrict to linear interactions:
that is, HI must be of the form

∑
j gjsj ⊗ ej, where gj are scalar

couplings, the sj operators act on the system states and the ej operators
act on the environment states. Along with the assumption that the
bath’s state is Gaussian (thermal), this guaranties that the resulting
fluctuations and dissipation form a Gaussian dynamical map, as
discussed in Sec. 3.3. The compound dynamics is thus dictated by the
total Hamiltonian

H = HS +HE +HI. (4.2)

4.2 quantum langevin equations

This section provides the (quantum) Langevin equations (QLE) of
an optical cavity mode, a clamped mechanical oscillator, and a nano-
particle levitated in an optical tweezer. Although they are rather
different systems, it turns out that their model and resulting open-
dynamics are similar. As explained in Sec. 4.1, they lead to Gaussian,
Markovian noise affecting the system.

Physically, the environment of an optical cavity is the collection of
harmonic oscillators forming the modes of the free field that couple
to it [GC85]. At optical frequencies, the state of the free field at room
temperature (300 K) is the ground state, to a good approximation;
cf. App. A.6. The bulk matter substrate, on which a mechanical
oscillator is clamped, can be seen as a collection of masses bound
harmonically to the mechanical resonator [FV63; CL83; GZ00]. The
state of this environment is thermal at the temperature of the substrate
(e.g. cryogenic temperatures of a few kelvins or less if it is placed in a
dilution refrigerator). Levitated systems are affected by the tweezers’
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photons scattering off it and by residual gas molecules in a thermal
state at the temperature of the walls of the vacuum chamber.

The QLE are equations of motion of operators in the Heisenberg
picture. For a dimensionless bosonic system operator z, the QLE have
the following structure in this document

ż =
i
 h
[z,HS] − γz+

√
2γξ. (4.3)

The commutator specifies the unitary evolution of the system under
the Hamiltonian HS [cf. Eq. (2.11)]; γ is the energy decay rate of the
system into the environment and it gives the system–environment
interaction strength; ξ is a stochastic process that implements the noise
and the factor

√
γ, partly scaling its strength, reflects the fluctuation-

dissipation theorem [Kub66; CW51; CG52].

The presence of both fluctuation and dissipation in the QLE is
crucial for the dynamics to be meaningful quantum mechanically. In
the absence of fluctuations, the dissipation would cause the operator z
to decay to zero, which would make its commutator (with any other
non-commuting system operator) Eqs. (2.15) and (2.19) decay to zero
accordingly. But the commutator relates to the bosonic nature of
z, which must not change in the course of the dynamics. It is the
input noise fluctuations that ensure that the commutation relations
are fulfilled at all times [CW51; CG52].

We note in passing that, in the presence of a cavity, a red detuned
drive (∆ < 0) also effectively damps the motion of the particle as well
[AKM14]. In terms of Langevin equations, this mechanism is included
in the unitary dynamics (commutator term) – in particular, the exact
computation for a single mechanical mode devised in Ch. 9 includes
this effective passive cavity cooling effect. In the broad cavity limit
Eq. (8.4) we consider in this work, this effect is inefficient. 6

4.2.1 Cavity mode

Consider a cavity mode with ladder operators c and c† (cf. Sec. 2.5)
coupled to the free field outside the cavity. The coupling strength κ is
the cavity decay rate. We assume that the mode is at optical frequencies
ωcav, much larger than the optomechanical dynamics we are interested
in (in particular ωcav ≫ κ or ωm the mechanical frequency). In that
regime, one performs a rotating-wave approximation so that the cavity–
bath interaction is of the form of a beam splitter Eq. (3.11). We work

6. But it is not clear that it is unimportant because we find that, in certain
parameter regimes, it improves entanglement detection with our protocol; see Sec. 10.1
and App. G.
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in a frame rotating at ωcav so that the integrals in the continuum limit
of bath modes extend to −∞. The QLE are [GC85, Sec. II]

ċ(t) = −
i
 h
[c,HS] −

κ

2
c(t) +

√
κcin(t) (4.4)

and its Hermitian conjugate. The second term models viscous friction
and yields exponential damping at a rate κ/2 – in frequency space
this corresponds to the Lorentzian lineshape with full width at half-
maximum (FWHM) κ of a cavity. The input operator cin in the last
term models fluctuations (noise) induced by the bath.

The statistic of the input noise process is given by the state of
the bath, which is the vacuum at optical frequencies (cf. Sec. A.6).
Therefore, cin is Gaussian and characterised by its first two moments
[GC85, Sec. II]

⟨cin⟩ = 0 (4.5a)〈
c
†
in(t)cin(t

′)
〉

sym
=
〈
cin(t)c

†
in(t

′)
〉

sym
=
δ(t− t ′)

2
(4.5b)

and all other correlators are zero. The delta-correlation reflects the
assumption that the environment is Markovian.

4.2.2 Clamped mechanical oscillator

The derivation of QLE for a massive mechanical oscillators clamped
to a substrate is provided in [GZ00, Ch. 3]. The bath is modelled by
an ensemble of massive harmonic oscillators and the interaction is
the product of the positions of the system’s oscillator with the bath’s
oscillators [FV63; CL83] – we call it an "qx-coupling". Differently
from the cavity case above, the coupling is not of the form of a beam
splitter because the rotating-wave approximation cannot be performed,
and there is no appropriate rotating frame that allows to extend the
integrals to −∞. The QLE for the dimensionless quadratures of the
mechanical mode are [Hof15, Sec. 1.3.1]

q̇(t) = −
i
 h
[q(t), HS] (4.6a)

ṗ(t) = −
i
 h
[p(t), HS] − γp(t) +

√
2γξ(t) (4.6b)

where γ is the damping rate (FWHM) and ξ is a Hermitian input noise
operator. Contrary to the QLE for the cavity Eqs. (4.4), these equations
are asymmetric: i.e. fluctuations and dissipation affect the momentum
quadrature only. This relates well to the intuition that the disturbance
from the mechanical environment in the form of uncontrolled vibra-
tions are like momentum kicks. In the decoherence vocabulary, the
form of the (qx-)interaction with the bath determines the preferred
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(pointer) basis being measured by the bath; and subsequently forgot-
ten (obliterated) to appear like pure noise [Zur81; Zur82]. The noise ξ
affects the position q via the internal (unitary) dynamics HS (typically)
connecting q and p.

As cin for the cavity, ξ is a process whose statistics are dictated
by the state of the bath. We assume that it is a thermal state at the
temperature T of the substrate; therefore xi is a Gaussian process.
The modes of the bath coupled to the mechanical oscillator are in the
frequency range of ωm. In this work, we will consider ωm of a few
tens of kHz up to GHz, therefore the thermal state of the bath has
large occupation number nth of the order 104 or more (see Sec. A.6 for
details). The first two moments of ξ are then [Hof15, Sec. 1.3.1]

⟨ξ⟩ = 0 (4.7a)〈
ξ(t)ξ(t ′)

〉
sym ≈ kBT

 hωm
δ(t− t ′) ≈ nth(ωm)δ(t− t ′). (4.7b)

Both approximations hold in the high temperature limit kBT ≫  hωm

where nth ≫ 1. The first states that the process is approximately
Markovian in that limit [GV01]; contrary to the cavity case above,
that is Markovian for a bath at zero temperature, i.e. with nth =

1/2. nth(ωm) is the mean occupation number from a Bose-Einstein
distribution Eq. (A.26) and the second approximation relates it to
kBT/( hωm) according to Eq. (A.27).

4.2.3 Levitated nano-particle

In the final Part iii of this thesis we study data from two setups
where the mechanical oscillator is implemented by a nano-particle
levitated at the tight focus of an intense laser field (called an optical
tweezer 7) [Del19; Mag21; Del+20b; Mag+21]. Quantum Langevin
equations can be derived similarly to those for the cavity and the
clamped mechanical systems.

The dominating noise mechanism in optically levitated systems is
photon recoil: this is the random momentum exchange of the intense
tweezer light with the particle. It is precisely the radiation pressure
at the core of optomechanical devices. In the open-dynamics model,
the electromagnetic field – tweezer + (free) field around the levitated
particle – forms the bath associated to the photon recoil noise. Ra-
diation pressure interaction is introduced in Sec. 5.3 where we find
that, in the limit of large intensity of the light, the linearised coupling
is of qx-type. 8 That it involves the particle’s position reflects again

7. To be distinguished from magnetic levitation [Hof+23; Chi+17], which we do
not treat in this work.

8. As for the the clamped mechanical systems above, no rotating wave approxim-
ation is possible.
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that it is the degree of freedom being measured (by the environment
here). 9 Similarly to the cavity above, we move to a rotating frame
at the frequency of the tweezer ωtw and the integrals over the bath
energy levels can be extended to −∞, because optical frequencies are
so much larger than the optomechanical dynamics of interest. In this
approximation, the terms that led to dissipation vanish identically –
i.e. the QLE are frictionless(!?), which is at odds with the fluctuation–
dissipation theorem. Radiation damping is expected in the form of
Doppler cooling but its rate γrad is very small 10; see [KFM08; Jai+16;
Nov17] for discussions and theoretical expressions. Therefore, one
writes the QLE for the dimensionless quadratures of the particle in
the template form of Eq. (4.3) as

q̇ = −
i
 h
[q,HS] (4.8a)

ṗ = −
i
 h
[p,HS] − γradp+

√
2γradξrad. (4.8b)

The statistics of the photon recoil process ξ is derived from the state
of the environment it forms: an intense coherent state and the vacuum.
Hence ξ is a Gaussian process. In a suitably displaced frame, the first
moment is zero

⟨ξrad(t)⟩ = 0. (4.9a)

Equations (4.8) explicitly enforce the template form of the Langevin
equations Eq. (4.3) (and the fluctuation–dissipation theorem): given
the damping rate γrad, the fluctuation strength is given by the noise
process correlator〈

ξrad(t)ξrad(t
′)
〉

sym ≈ nradδ(t− t
′). (4.9b)

Markovianity is a consequence of the electromagnetic field model,
as for the cavity in Sec. 4.2.1 above. In practice, γrad is too small to
be measured 11 and it is the (re)heating rate Γrad = γradnrad that is
measurable [Jai+16]; because γrad is (very) small, nrad is (very) large.

9. As far as I can tell, the use of the amplitude x of the light in the interaction
model is a convention. It relates to the classical intuition that, in a sensor as in Fig. 1.3,
the position of the object is encoded on the (physical) phase of the reflected light (it
difference with send light actually). Here, the quantum dynamics Eq. (2.11) lead to
position information being encoded onto the phase quadrature y. We explained in
Sec. 2.5 that physical and quadrature phases are different physical things in general.

10. To my understanding, it is indeed the approximate extension of frequency
integrals to −∞ that misses the necessary finite damping. But the approximation at
optical frequencies is quite good, which is consistent with the damping being quite
small.

11. To my knowledge, radiation damping has not been measured directly yet.
But with more and more levitation setups operating in ultra-high vacuum and the
improvement of control to stabilise them, I can’t wait to read about an experimental
characterisation.
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In the systems considered in this document, Γrad is the dominating
noise [Del+20b; Mag+21].

In the setups studied in Part iii, additional noises are relevant. We
add them to Eqs. (4.8) in an ad hoc manner [following the template
Eq. (4.3)] as

q̇ = −
i
 h
[q,HS] (4.10a)

ṗ = −
i
 h
[p,HS] −

∑
j

γjp+
√

2γjξj. (4.10b)

where j labels the different (and independent) baths connected to the
levitated system.

Concretely, the additional dissipation and fluctuation mechanisms
relevant for later are residual gas damping and feedback damping.
The former is typically modelled in the same way as the thermal
input noise ξ for a clamped mechanical oscillator [cf. Eqs. (4.6) and
(4.7)] [Del+20a; Del19; Mag+21; Mag21; Jai+16]. The damping rate
γgas can be expressed empirically with respect to the remaining gas
pressure and average velocity of the molecules, see for example [Del19,
Sec. 2.3.1] and references therein. The fluctuations are modelled by
a Gaussian white-noise process

√
2γgasξgas with amplitude relating

to the average kinetic energy of the gas at temperature T : in the
thermodynamic limit, the average kinetic energy of the molecules is
kBT , corresponding to ngas ≈ kBT/( hωm) phonons at the frequency of
the mechanical oscillator. We write the now familiar first and second
moments〈

ξgas(t)
〉
= 0 (4.11a)〈

ξgas(t)ξgas(t
′)
〉

sym ≈ ngasδ(t− t
′) (4.11b)

where the approximation symbol reminds us that this is a classical
(high temperature) limit.

Most levitation experiments in vacuum have some feedback damping
implemented. It typically uses the knowledge of the particle’s position
(from prior measurements) and actuates the system (e.g. the trap)
in order to decrease the particle’s motional amplitude. This leads
to an effective damping at rate γfb [Wil+15]. It (must!) come with
an associated noise ξfb accounting, fundamentally, for the quantum
noise in the measurement, and also for technical imperfection of the
feedback mechanism. Depending on the feedback strategy, ξfb can be
non-Markovian and non-Gaussian. For the practical cases studied in
this thesis, the fluctuations due to feedback can be neglected compared
to the photon recoil, while the feedback damping is large enough to
stabilise the particle in the trap [Del+20b; Mag+22] (and possibly
cool to its ground state [Mag+21; Teb+21]); in that limit, γrad can be
neglected compared to γfb.
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4.3 measurable output light

Central to the aim of this work, we want to demonstrate optomech-
anical entanglement based on measurable quantities. Therefore, we
need to specify what is measured: the light coming out of an op-
tomechanical device forms the output mode, which is monitored (pos-
sibly continuously) by (linear) photodetectors that define the detected
mode. Output and detection modes might have some mismatch (im-
perfect visibility) or photons from the output mode might not reach
the detector (imperfect efficiency); (at optical frequencies) these are
so-called passive losses and they are discussed in detail in Sec. F.2.

The presence of a cavity in the device defines the output mode: it is
the mode of the free field outside the cavity (its bath, cf. Sec. 4.2.1) that
couples to it at rate of the cavity linewidth κ (FWHM). Moreover, in
the case where only one of the mirrors transmits light, then the input
and output modes of the light overlap. Then, the quadratures x, y of
the cavity mode – which relate to the mechanical oscillator via the
optomechanical interaction (left unspecified in HS here) – are encoded
on the cavity output according to the so-called input-output relations
[GC85]

xout =
√
κx− xin (4.12a)

yout =
√
κy− yin. (4.12b)

All quantities here relate to the QLE for the cavity Eqs. (4.4) trans-
formed to the quadrature representations with Eqs. (2.18). The input–
output equations for ladder operators take the exact same form.

In the absence of a cavity, the output mode is defined by some other
property of the device. In a scattering picture model, the input light
scatters form the optomechanical device and the scattered light forms
the output mode. The relevant case here is when the optomechanical
device is solely a nano-particle (in back-scattering configuration) held
at the focus of an intense optical laser (tweezer). One writes [Mag21,
Sec. 5.1.3]

xout = xvac (4.13a)

yout = yvac +
√
Γrad,jqj (4.13b)

where Γrad,j here is to be interpreted as the scattering rate into the
output mode [in the same way the cavity decay rate is the coupling
rate between cavity mode and detected mode of the output field in
Eq. (4.12)]. Because the photon recoil bath is a coherent state (plus
the vacuum), the input operators in a suitably displaced frame (cf.
Sec. 3.3) are the vacuum state; and in these equations, xvac and yvac

operate on the output mode exactly 12

12. This shortcut from the full description where the input mode is different form
the output one is possible precisely because the input are vacuum fluctuations (in
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In general, and in the dipolar scattering case in particular, not all
the scattered light is detected. In the back-scattering configuration,
the lens (focussing the tweezer) is also the one (re-)collecting the
(back-scattered) light and channelling the light towards the detector
– i.e. it defines (theoretically speaking) the detection mode. The
mode mismatch between output and detected modes leads to photon
losses modelled by passive losses 13; cf. App. F.2. We introduce the
collection visibility νcoll(= ndet/nin) that quantifies the ratio of detected
photons to total scattered photons. We call "orthogonal" the mode
that is detected but not populated by the scattered light, and it is
associated to the quadrature operators denoted x⊥out and y⊥out. 14 It is
in the vacuum state. We write the detected quadratures as [Mag21,
Sec. 5.1.3]

xdet =
√
νcollxvac +

√
1 − νcollx

⊥
out (4.13c)

ydet =
√
νcoll

[
yvac +

√
Γrad,jqj

]
+
√

1 − νcolly
⊥
out. (4.13d)

The Γrad,j enter the dynamical equations with two different roles.
In the input-output relations Eqs. (4.13) they are a coupling rate that
scales how well the particle’s position is encoded on the detected
channel – i.e. how much information an observer obtains about the
particle. But in the QLE for the particle Eqs. (4.8) it is a noise term
disturbing the particle’s momentum. Both mechanisms are what we
will call (measurement) back-action in Sec. 5.3.1. For this reason, Γrad,j

is also denoted by Γba
j [Mag21; Mag+21]. For imperfect collection

efficiency νcoll < 1, it is common to denote Γmeas,j := νcollΓ
ba
j as the

measurement rate.

The scattering picture is a neat example of how measurement and
noise are both related in terms of gain and loss of information (with
respect to the observer that updates their knowledge accordingly). Im-
portantly, both measurement and noise are decoherence mechanisms.
Here, observed and unobserved photons disturb (and decohere) the
particle’s motion: the detected photons lead to position localisation,
while the undetected ones lead to recoil heating. Both are detrimental
in the preparation of states in general; but certain Gaussian entangled
states are robust to the passive losses decoherence (in the sense that
they remain entangled for arbitrary finite losses) [Bar+11].

the displaces frame). See [Mag+21, Suppl. S.5] for the rigorous derivation and
[Del19; Del+20b; GB+19] for the (more general) treatment of the coherent scattering
configuration where the input and output modes do not overlap.

13. In the language of decoherence, the undetected scattered photons carry away
information about the system and are "lost to the environment".

14. It is painful for me as well. . .



5
E L E M E N T S O F C AV I T Y O P T O M E C H A N I C S

This chapter describes the concrete physical optomechanical systems
studied in this work, where a light mode is coupled via radiation pres-
sure to some oscillatory-motion mode of a solid. They are modelled
as quantum harmonic oscillators of different natures.

5.1 mechanical mode

In the context of this work, mechanical oscillators are vibrating
massive objects. There are many ways to engineer mechanical oscillat-
ors and it heavily depends on what is their purpose. For most of them,
the vibrating mode is a particular deformation of some solid: e.g.
the cantilever or guitar-string motion of a nanorod [Ber22; Dos+19],
the drum modes of a membrane [Gä20; Tsa+17], the breathing mode
of a micro-torus [SK10] or of a helium droplet [Chi+17], the bulk or
surface acoustic waves in a solid [O’C+10; Chu+18; Gus+14; Mod+20];
while for other mechanical oscillators, it is the entire solid body that
is moving, for instance levitated nano-particles [Del19; Mag21] or
suspended mirrors [Aas+15; Ber+21]. Detailed studies of every type of
device lead to optimised and engineered properties such as reduction
of losses (lower damping), engineering of the frequencies of the modes,
and improvement of the coupling to light with better reflectivity and
smaller interaction volumes.

A mechanical oscillator with effective mass m of the moving part
and resonance frequency ωm is associated to quadrature operators Q
(position) and P (momentum). They relate to the corresponding dimen-
sionless operators q and p via zero-point fluctuations factors qzpf and
pzpf Eq. (2.14) that give (in absolute units) the ground state extension
of the oscillator in phase space; cf. Secs. 2.5 and 3.1. The spread qzpf

and pzpf are the typical scale of the fundamental uncertainty associated
with the quantumness of a harmonic oscillator. The (non-Hermitian)
ladder operators b and b† relate to q and p via Eqs. (2.18) and the
unitary dynamics of a harmonic oscillator is given by the Hamiltonian
of Eq. (2.20)

HHO =
 hωm

2
(
p2 + q2) =  hωm

(
b†b+ 1/2

)
. (5.1)

See Sec. 2.5 for details on quantum harmonic oscillators.

The technological advances in nano-fabrication of the last years
allowed to produce mechanical oscillators with smaller masses and

45
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larger frequencies thereby increasing qzpf and making that typical
"quantum scale" more accessible. Moreover, mechanical resonators
with small masses are more susceptible to tiny forces, which makes
them precise sensors. 1 Also, higher frequencies are favourable in
terms of sensing because there are fewer possible sources of noise
that could mask a signal at higher frequencies. This is relevant in this
work where we study mechanical oscillators above 50 kHz so that the
only relevant sources of noise are stationary (over the relevant time
scales of the dynamics of the system), Markovian, and Gaussian (e.g.
associated to a thermal bath model as in Ch. 4).

Another important property of mechanical oscillators is their amp-
litude decay or damping rate γm. In the open-system model of
Ch. 4, the damping is due to the coupling to an environment and
γm quantifies both how much energy is dissipated into the bath and
how much the bath disturbs the system as a consequence of the
fluctuation–dissipation theorem. Here again, technological develop-
ments in (micro-/nano-) fabrication made it possible to reach tiny
decay rates, thus decoupling certain mechanical modes from their
substrate/bath. 2 The usual figure of merit is the mechanical quality
factor Q which compares γm to the mechanical frequency

Q :=
ωm

γm
. (5.2)

Q is the number of oscillations before the amplitude decreased signific-
antly (by 1/e). Nowadays it is common to have systems with Q above
105 and some even reach 1010 [Ber22; Tsa+17; Gä20]; in this work, we
always assume large Q≫ 1 so that we are deep in the underdamped
regime.

5.2 cavity mode

A cavity singles out a certain mode of the electromagnetic field. Ac-
cording to its quantisation, this field mode is described by a harmonic
oscillator: cf. Sec. 2.5. We assign to it ladder operators c and c†, asso-
ciated to dimensionless observable quadratures x (called "amplitude")

1. It is worthwhile noting that the nature of the force to be detected is also relevant
in the choice of the oscillator’s mass: for instance the LIGO/Virgo collaboration opted
for very heavy masses because the mechanical oscillator acts as a low frequency
noise filter rather than a resonant amplifier. Also, in an experiment measuring the
gravitational force between small masses, they opted for a relatively large source
mass with appreciable gravitational field strength and a relatively large test mass to
have a sensitive acceleration sensor [Wes+21].

2. This reasoning is particularly suited for vibrational modes of solids clamped to
a bulk substrate (like the membranes we will study later). In the case of optically lev-
itated systems, decoupling from the bath amounts to losing control and measurement
rate, therefore isolation as optimisation target is no longer suitable.
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and y (called "phase"). The dynamics of the cavity mode is also given
by the harmonic oscillator Hamiltonian Eq. (2.20)

Hcav =
 hωcav

2
(
y2 + x2) =  hωcav

(
c†c+ 1/2

)
. (5.3)

ωcav is the resonance frequency of the cavity and we assume that it is
at optical frequencies.

There are many possible implementations of electromagnetic res-
onators; for optical frequencies, we use here the prototypical Fabry-
Pérot cavity in order to highlight typical relationships between key
physical quantities (relations might be different for different imple-
mentations, but the underlying logic and principles remain the same).
A Fabry–Pérot cavity consists of two perfectly parallel mirrors facing
each other so that propagating light bounces back and forth between
them. ωcav is resonance of the cavity, that is, there must be a positive
integer n such that ωcav = πnc/L, where L is the distance between
the mirrors and c is the speed of light. We want to detect the light
outside the cavity, and we assume that one of the mirrors has finite
reflectivity and the other is (asymmetrically) perfectly reflective. The
average number of times light bounces on the mirror before it is leaves
is called finesse F and is large but fixed by the nature of the mirrors.

In Sec. 4.2.1 when we modelled the coupling of a cavity mode to
the fields outside, we introduced the cavity decay rate κ in the QLE
Eqs. (4.4). It is the decay rate of the mode quadratures. κ relates to the
cavity finesse as

κ =
πc

F L
. (5.4)

Because the finesse is fixed, κ is tuned by changing the separation
between the mirrors. From the perspective of the cavity field, κ scales
the time light stays in the cavity; and the trapped light the mirrors
corresponds to a build-up of intensity compared to free propagating
light. This effect is quantified by the circulating power in the cavity: if
ṅin is the rate of photons 3 at the cavity input, we get for a resonant
drive [HO17]

ṅcav = ncav
c

2L
=

2
π
Fṅin. (5.5)

This is an enhancement of the circulating power by a factor propor-
tional to the finesse.

Similarly to γm, κ is the coupling of the cavity mode to its thermal
bath. But, as we stressed in Ch. 4, the role of the cavity environment is
different from that of the mechanical oscillator because it is measured
(or part of the measurement apparatus). Depending on the purpose
of the optomechanical device, one chooses κ large or small compared

3. Multiply by  hωcav to get the power.
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to the mechanical frequency ωm: the narrow cavity regime where
κ < ωm (called "sideband resolved") is useful to tailor and enhance
the optomechanical interaction and mitigate the noise input from the
cavity environment. It is also helpful to efficiently cool the mechan-
ical oscillator passively (possibly to its ground state) [AKM14]. The
broad cavity linewidth regime κ > ωm (called "sideband unresolved")
corresponds to the case where light exits the cavity quickly so that
the information it contains about the mechanical state is not delayed
much; this is the regime we are interested in.

5.3 linear optomechanical hamiltonian

The optomechanical interaction considered in this work is radiation
pressure between a cavity mode (or free space) and a mechanical
mode (typically a vibrating deformation of a piece of matter or a
swinging solid body). Radiation pressure is predicted (classically)
by Maxwell’s equations (through the Poynting vector of energy flux).
Quantum mechanically, radiation pressure interaction is modelled by
the following Hamiltonian [AKM14]

Hint =
√

2g0c
†cq (5.6)

where g0 is the single photon coupling. In essence, this interaction
couples the cavity mode intensity (or circulating power) g0c

†c to the
mechanical position q. In the limit of strong drive (i.e. input power),
the cavity average occupation is large ncav ≫ 1 and the interaction can
be linearised to [Hof15; AKM14]

Hint,lin = 2  hgxq (5.7)

where x is the cavity amplitude quadrature and g is the "dressed"
optomechanical coupling

g := g0
√
ncav/2. (5.8)

In a frame rotating at the frequency ωd of the electromagnetic
field driving the cavity, and displaced so that the first moments of
the (cavity and mechanical modes) operators are zero at all times
(cf. discussion of displaced frames in Sec. 3.3), the optomechanical
Hamiltonian takes the following form

HOM,lin = − h∆c†c+  hωmb
†b+ 2  hgxq. (5.9)

We introduced the detuning ∆ := ωd −ωcav between the drive and
the cavity (with the same sign convention as in [Hof15; AKM14]). If
∆ < 0 one speaks of red detuning, and one speaks of blue detuning when
∆ > 0.



5.3 optomechanical model 49

5.3.1 Unitary dynamics

The linearised qx-optomechanical interaction Eq. (5.7) in the ladder
operator representation is

Hint,lin =  hg(c†b+ cb†) +  hg(c†b† + cb). (5.10)

It contains two distinct mechanisms:
• The first bracket describes the swap of quanta from one mode to

the other: c†b annihilates a phonon and creates a cavity photon,
and its Hermitian conjugate does the opposite. In Sec. 3.3 we had
called this term beam splitter (BS) because it models the behaviour
of a physical beam splitter, distributing excitations from two input
channels across two outputs coherently.

• The second bracket creates (and annihilates) quanta in both modes
simultaneously. We had called it two-mode-squeezer (TMS) in Sec. 3.3.
When operating on a two modes Gaussian state where one mode
is in the vacuum state and the other is in an (arbitrary!) thermal
state, it generates an entangled state [MMS03; Bar+11]; this is the
state we expect for the optomechanical systems we have in mind.
This is essentially how the optomechanical entanglement that we
aim to verify is created.

Fig. 5.2 Schematic of the
three Lorentzian spectral
components of the cavity
output light: the driving
field in yellow at ωd = 0
(in the rotating frame); the
red (at −ωm) and blue (at
+ωm) sidebands form the
scattering with the mech-
anical oscillator according
to Hint,lin and transmitted
by the cavity (broad black
Lorentzian).

The two-mode squeezing interaction generates down-scattered (Sto-
kes) photons at frequency ωd −ωm (in the non-rotating laboratory
frame) [AKM14] [Hof15, Sec. 1.2]. In the frequency spectrum 4 of the
detectable light emitted by the cavity, these photons form a sideband.
Because it is below the main component from the drive, it is called
the red sideband; see Fig. 5.2. Similarly, the beam splitter interaction
generates up-scattered light (anti-Stokes) at ωd +ωm that appears as
an upper sideband in a detection spectrum; therefore, this is called
the blue sideband.

Relating the sidebands to the different interactions is a central guide
for thoughts when devising the protocol to detect stationary entan-
glement in the coming Part ii. Specifically, the components ωd ±ωm

designate, in measurement records, which process produced the light
(in that spectral component). The two-mode-squeezing interaction
generates an entangled state of the cavity light and the mechanics,
hence the photons on the red sideband contain information about the
optical part of this entangled state. The beam splitter swaps coherently
the mechanical state of the mechanics onto the light, hence the light
in the blue sideband contains information about the mechanical state.
This reasoning is at the core of our specific proposal of an experimental
protocol to verify stationary optomechanical entanglement; see Ch. 6.

4. For example, monitoring the light in the stationary regime allows to determine
the power spectral density (PSD) of the output light that tells how much intensity
there is in different frequency bins.
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5.4 summary of optomechanical model

In the previous sections, we provided a heuristic and, hopefully,
intuitive picture of the optomechanical dynamics. In this section,
we provide a rigorous treatment of cavity optomechanical devices as
open systems where both the cavity and the mechanical modes are
coupled to thermal baths, cf. Ch. 4. We present the scenario where
two mechanical modes interact optomechanically with the cavity; this
is a generalisation of the habitual treatment and it allows to introduce
the notation used in the next parts. We combine here the material
introduced so far: the quantum harmonic oscillator from Sec. 2.5, the
linearised optomechanical interaction from Sec. 5.3 above, and the
quantum Langevin equations (QLE) with their associated Gaussian
white-noise models presented in Ch. 4. The continuous-variables
formalism of Ch. 3 binds everything together in the compact picture
of Gaussian dynamics with powerful tools to study states, dynamics,
and (later) entanglement.

The solution for the detectable output light field is provided and
discussed: it is the basis for the original work presented in the rest of
the thesis. The derivation of the solution is well known; see [Gen+08]
for instance. Nevertheless, we present it in App. C because there are
several subtle points and notation (and Fourier transform conventions!)
that deserve to be highlighted for anyone to reproduce or use the
method. The symbolic calculations are implemented in a Mathematica
notebook available in [Gut24, Theoretical predictions derivation .nb] 5.

We want to describe cavity optomechanical devices that couple an
optical mode of light to two mechanical oscillator modes via radiation
pressure. On their own, cavity and mechanics are harmonic oscillators
with frequencies ωcav, ωj ( j = 1, 2). The mechanical frequencies relate
to each other according to

ω2 = (1 +D)ω1 = ω1 +∆ω (5.11)

with 1 > |D| > 0 – we expect D ∼ 1 to 30% for the cases treated in this
thesis. Cavity and mechanical modes are described by dimensionless
Hermitian bosonic quadrature operators x, y, qj, pj, respectively. The
quadratures are associated with non-Hermitian ladder operators c, c†

for the cavity mode, and bj, b
†
j for the mechanical modes. They relate

to each other according to [cf. Eqs. (2.18)]

bj =
qj + ipj√

2

b
†
j =

qj − ipj√
2

qj =
bj + b

†
j√

2

pj =
bj − b

†
j

i
√

2

(5.12a)

5. File path:
Thesis_CGut_StationaryOptomechanicalEntanglement/chapter_structure/

9ch_TheoreticalPredictions/TheoreticalPredictions_derivation.nb
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and similarly for the cavity operators

c =
x+ iy√

2

c† =
x− iy√

2

x =
c+ c†√

2

y =
c− c†

i
√

2
.

(5.12b)

In the Heisenberg picture, they obey equal-time canonical bosonic
commutation relations [cf. Eqs. (2.15) and (2.19)][

qj(t), pj(t)
]
= i δjk

[
bj(t), b

†
k(t)

]
= δjk (5.13a)

[x(t), y(t)] = i
[
c(t), c†(t)

]
= 1. (5.13b)

The open-system dynamics in Heisenberg picture is given by the
quantum Langevin equations (QLE) [Hof15, Sec. 1.3]

ẋ = −
κ

2
x−∆y+

√
κxin (5.14a)

ẏ = ∆x−
κ

2
y− 2g1q1 − 2g2q2 +

√
κyin (5.14b)

q̇j = ωjpj (5.14c)

ṗj = −ωjqj − γjpj − 2gjx+
√

2γjξj. (5.14d)

They are valid in the limit where the cavity is driven strongly, so that
the optomechanical interaction can be linearised. In addition, they
are expressed in a frame rotating at the drive frequency ωd (detuning
by ∆ from the cavity resonance) and suitably displaced so that the
operators have zero first moments. The mechanical modes interact
only with the cavity at rates gj (i.e. they are independent), and we
assume that g1 > g2 (in the sense that the device is designed so that
one mechanical mode is better readable by the light).

The environment of the cavity is the free electromagnetic fields out-
side. They are coupled at the rate of the cavity linewidth κ. At optical
frequencies, the free fields are in an (almost) unoccupied thermal state
(i.e. almost the vacuum) and the input noise is a Gaussian white-noise
process characterised by its first two moments [cf. Eqs. (4.5)]

⟨xin(t)⟩ = ⟨yin(t)⟩ = 0 (5.15a)

and 〈
xin(t)yin(t

′)
〉

sym =
〈
xin(t)yin(t

′)
〉

sym = 0〈
xin(t)xin(t

′)
〉

sym =
〈
yin(t)yin(t

′)
〉

sym = δ(t− t ′)/2.
(5.15b)

The environments of the mechanical resonators are independent
thermal baths. They couple at rate γj ≪ ωj so that both modes have
high quality factors. It will be convenient for later to define a matrix
of ratios of mechanical frequencies and decay rates

Qjk :=
ωj

γk
≫ 1 (5.16)
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with j, k = 1, 2; the quality factors form the diagonal Qjj ≡ Qj (we
will use both notations). All the elements of the matrix are large for
mechanical frequencies that are spaced by a few tens of percent [cf.
Eq. (5.11)]. We assume that both baths are highly populated nj ≫ 1
(high temperature limit) and, for the systems we have in mind (e.g.
clamped mechanical oscillators or levitated nano-particles), we expect
that their temperatures are the same T1 = T2 = T . For mechanical
frequencies differing by a few tens of percents, we have

nj ≈ kBTj/( hωj) ≈ nk̸=j. (5.17)

The input noise operators are thus white-noise Gaussian processes as
well, with statistics [cf. Eqs. (4.7)]〈

ξj(t)
〉
= 0 (5.18a)〈

ξj(t)ξk(t
′)
〉

sym ≈ njδjkδ(t− t
′). (5.18b)

We assume that the dynamics are stable (see App. C.2 and/or
[Gen+08]) with a unique steady state [Hof15]. In all subsequent
analysis, we assume that this steady state has been reached.

We write the QLE Eqs. (5.14) in a compact matrix form as

ṙ(t) =Mr(t) +Nn(t). (5.19)

In control theory, one says that they form a state-space model, where
the 6-vector of quadratures

r := (x, y, q1, p1, q2, p2)
T ≡ (x, y, qj, pj)

T (5.20)

is called the state vector. The real 6-by-6 matrix M is called system
matrix and it encodes the deterministic part of the dynamics. The
6-vector

n := (xin, yin, 0, ξj)T (5.21)

encodes the input stochastic fluctuations from the environments and
is called the input vector. The 6-by-6 real matrix N is called input matrix
and it encodes the coupling strengths of the input noises.

The solution to the linear system of ordinary differential equations
Eq. (5.19) amounts to inverting a linear transformation in Fourier
space [Gut24; Gen+08]

r(ω) = −(M+ iωI)−1Nn(ω). (5.22)

This form is the same regardless of whether one uses ladder or quad-
rature operator representations, but the explicit form of the matrices
and vectors in terms of the system parameter must be adapted; see
App. C for details.
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The detectable light is the output of the cavity given by (cf. Sec. 4.3)

rout(ω) =

(
xout

yout

)
=
[
Nout(−1)(M+ iωI)−1Nin +Nfdtr

]
n(ω). (5.23a)

In the vocabulary of state-space models, Nout is the output matrix and
Nfdtr is the so-called feed-through matrix. Because rout is a 2-vector, 6

Nout and Nfdtr must be rectangular 2-by-6. Moreover, their explicit
form depends on the choice of ladder or quadrature representation as
well; see App. C.

It is instructive to have a look at the explicit expression of the
output light quadratures for the simpler but relevant undetuned case
∆ = 0 [Gut+20] (this calculation his carried out and checked in [Gut24,
Theoretical predictions derivation .nb] 7)

xout(ω) = S(ω)xin(ω) (5.23b)

yout(ω) = S(ω)yin(ω)

+
∑
j=1,2

4g2
jχopt(ω)2χj(ω)xin

−
∑
j=1,2

2gj
√

2γjχopt(ω)χj(ω)ξj(ω).

(5.23c)

We introduced the mechanical susceptibilities

χj(ω) :=
2ωj

ω2
j −ω

2 − iγjω
=

2ωj

(ω−ω+
j )(ω−ω−

j )
(5.23d)

with roots ω±
j = (±

√
4ω2

j − γ
2
j − iγj)/2; the optical susceptibility

χopt(ω) :=
√
κ

κ− 2iω
(5.23e)

and the reflection phase

S(ω) :=
κ+ 2iω
κ− 2iω

. (5.23f)

The phase quadrature of the light is affected by the optomechanical
interactions, while the amplitude quadrature encodes only the input
noise of the cavity; this is a particular feature of the zero detuning
case. For non-zero detuning, both quadratures encode the mechanical
motion. We see that, in the displaced frame, the dynamics is driven by
the environmental input fluctuations xin, yin and ξj. We distinguish
three types of driving noises: shotnoise, back-action noise, and thermal
noise.

6. Because we ignored the inaccessible output modes of the mechanical bath.
7. File path: see footnote 5.
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shotnoise The only term in xout and the first one in yout is the
so-called shotnoise contribution. It corresponds to the (fundamental)
vacuum fluctuations of the environmental mode supporting the out-
put field. The phase S(ω) is due to the cavity that delays the output
field compared to the input. Importantly, this shotnoise contribution
does not depend on the presence of the mechanical oscillator; it is
always present when detecting modes of light. When a sensing device
is limited in sensitivity by this noise source it is called shotnoise limited
– it is the best possible precision for measuring both quadratures of the
light simultaneously. It is achievable with homodyne or heterodyne
detection (discussed in App. F), which is considered a standard tool
in quantum optics laboratories nowadays. Shotnoise in the detection
of light is unavoidable, but it can be mitigated using squeezed states
for the drive. This method is an example of quantum non-demolition
methods used for improved sensing [GLM06; GLM11; Yu+20]. The
shotnoise is a (fundamental) form of so-called "sensing noise", that
is noise affecting the measurement probe on top of any signal (as
opposed to the "force noise" below). An example of (non-fundamental)
sensing noise is the thermal motion of the mirror’s coating of the
LIGO/Virgo interferometers. We do not include sensing noise ex-
plicitly in our model because it is not relevant for the micro-/nano-
mechanical devices we are primarily interested in. However, we dis-
cuss passive losses of imperfect detection in App. F.2, which are also a
form of sensing noise.

back-action noise The terms in the second line of the expression
of yout are the back-action contributions. Back-action originates from
the amplitude quadrature xin of the electromagnetic bath that enters
the QLE Eqs. (5.14) as a drive of the cavity amplitude in Eq. (5.14a).
Subsequently, it affects the mechanical momenta in Eq. (5.14d), which
corresponds to the radiation pressure interaction of strength gj. Then,
the harmonic motion transfers the effect onto qj via Eq. (5.14c). Finally,
in Eq. (5.14b) a second optomechanical interaction encodes the fluc-
tuations from qj into the cavity’s phase quadrature. This is how the
input noise xin "acts back" onto the output yout through the optomech-
anical interaction twice (leading to the factor g2

j). The mechanical
susceptibilities χj describe the transduction of a drive by the mech-
anical modes. The cavity also transfers the back-action (twice), as
encoded by the optical susceptibility χ2

opt. With a suitable choice of
correlation between xin and yin, the back-action term in Eq. (5.23c) can
be reduced and, in principle, eliminated [Lei+16; Sho+19].

thermal noise The last terms in Eq. (5.23c) are the contributions
from the mechanical baths via the operators ξj. They appear linear
in gj because they interact with the cavity mode only once. The
effect of this driving noise is transmitted by the mechanical oscillators
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and the cavity, hence the factors χj and χopt. It is an instance of
what is sometimes called a "force noise" – i.e. a perturbation acting
on the centre-of-mass motion of the mechanical oscillator and being
transduced by it. From this point of view, our QLE model here is
restricted to white force noises that are more common for oscillators
at relatively high frequencies (typically above 10kHz). Low frequency
mechanical modes are usually subject to non-Markovian noises such as
structural damping [Fed+18; Grö+15; Cri+19] or seismic noise filtered
by several suspension layers like in LIGO/Virgo [Aas+15; Ber+21];
see also our work on optomechanical entanglement in the presence of
non-Markovian noise [Dir+24].

In this discussion of the different noises driving an optomechanical
cavity, we see that shotnoise and back-action are related to the very
fact of observing/measuring mechanical motion through the cavity
bath in the vacuum state, while thermal noises are pure noise channels.
It is useful to characterise the rate at which information is "read-out"
from the system in the detection channel and the rate at which it is
lost due to the noise channel. We introduce heuristically the readout
rates and the thermal noise rates

Γ ro
j :=

4g2
j

κ
(5.24a)

Γ th
j := γjnj. (5.24b)

Arguably, their meaning and origin from the QLE or the output field
Eqs. (5.23b) and (5.23c) is not obvious; but they will come in handy
later in the calculations and results of Part ii. Γ ro

j relates to the coherent
optomechanical interaction rate, as observed at the cavity output – the
factor 1/κ describes the transduction by the cavity, in the unresolved
sideband limit κ≫ ωj. On the other hand, Γ th

j are the thermal noise
rates that would give the strength of the jumps operators in a Lindbald
master equation: they are the product of the system–bath coupling γj
with the strength (or number) nj of incoherent excitations from the
bath (typically associated to its temperature).

In the optomechanical literature, it is common to introduce the
dimensionless (quantum) cooperativity C, which effectively quantifies
how well mechanical motion is knowable, i.e. how well the mechanical
mode is coherently coupled to the detectable output mode, as com-
pared to the undetectable noise channel. The cooperativity is defined
as the ratio of readout to thermal noise rates

Cj :=
Γ ro
j

Γ th
j

=
4g2

j

κγjnj
. (5.24c)

This definition (second term) also applies to devices without cavity;
for a levitated particle in back-scattering configuration (treated in
Part iii) Γ ro is the photon recoil rate Γrad (or back-action rate Γba) from
Sec. 4.2.3 [Mag21]. The right most term is the expression for cavity
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optomechanical systems [AKM14]. 8 Cooperativity larger than 1 is a
typical marker that one operates at the quantum limits; the cooper-
ativity is closely related to the possibility of cooling the mechanical
state to its ground state [AKM14; HH15].

It is surprising how little our results below relate to C and to the
regime C > 1. Instead, the quantity that appears often in the coming
study is what we call the total dynamical rate

Γ tot
j := Γ ro

j + Γ th
j . (5.24d)

We will see that it relates to the detection of entanglement in temporal
modes of light, as prescribed by our protocol – so far we cannot
attribute more physical meaning or interpretation to it.

8. It differs from the definition in [Hof15] where the thermal rate is γj(nj+1). Our
study is relevant only in the high temperature limit nj ≫ 1 where both definitions
are equivalent.
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P R E FA C E T O PA RT i i

This part describes the details of a scheme to demonstrate station-
ary optomechanical entanglement experimentally. The main proced-
ure and results were published in: C. Gut, K. Winkler, J. Hölscher-
Obermaier, S. G. Hofer, R. Moghadas Nia, N. Walk, A. Steffens, J.
Eisert, W. Wieczorek, J. A. Slater, M. Aspelmeyer, and K. Hammerer,
Physical Review Research 2, 033244 (2020) [Gut+20]. We also present
subsequent analyses and extend the study to a second mechanical
mode in the model. The developments presented here are for cavity
optomechanical devices. It turns out that a similar derivation can
be undertaken for devices without cavity; the derivation and study
of this case is the work of my colleague Klemens Winkler, who will
report on them elsewhere.

The theoretical description of stationary entanglement between
a measurable light field and a mechanical oscillator was provided
already in 2008 [Gen+08]. The experimental demonstration of op-
tomechanical entanglement was performed in the pulsed regime in
2013 [Pal+13] and it remains an open challenge to demonstrate it in the
stationary regime. Examples of proposals to do so [MDC10; Mia+10a;
Mia+10b] are based on the deduction of the state of the mechanical
oscillator from measurements of the light. This is possible by means of
a state-space model (e.g. a Kalman filter) [Wie+15; Mag+21; Ros+19].
Entanglement in the thus deduced (filtered) joint state of the mechan-
ics and the light can in principle be assessed. For the state-space model
to provide accurate state estimations, the system parameters entering
the model (e.g. mechanical frequency, couplings, decoherence rates,
etc.) must be accurately characterised, which can be a challenging
experimental task. The added value of our protocol presented in the
following lies here: in principle, the parameters of the device need
not be known (at all) to certify optomechanical entanglement. In the
stationary regime, if one observes entanglement in particular temporal
modes of the light coming out of the cavity, then this is enough to
conclude the presence of stationary optomechanical entanglement. In
practice, knowledge of the system parameters is useful for making
model-based predictions.

organisation of part ii

Chapter 6 presents the ideas at the core of the protocol, based on
the physical understanding of optomechanics developed throughout
Part i. It introduces the building blocks of our understanding and
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interpretation, which guided more or less all subsequent choices,
treatments, and derivations. The next chapters are devoted to a
rigorous and systematic presentation of the protocol.

The generality of our approach relies on an entanglement verifica-
tion "theorem" 9 that we present and prove in Ch. 7. It allows to infer
optomechanical entanglement from the observation of entanglement
between temporal modes of the light coming out of the device – but
not vice versa. The theorem has two prerequisites that are agnostic
of the system (neither the parameters nor the details of the dynamics
need to be specified). As far as I can tell, in principle, all optomechan-
ical devices can be operated in a way that satisfies these prerequisites;
however, we do not expect that entanglement can be demonstrated in
all systems with our approach.

Being sufficient – but not necessary – for optomechanical entangle-
ment, the theorem is informative only when one successfully observes
entanglement (in temporal modes of the output light). Moreover, it ap-
plies to any system, therefore it is not helpful to determine parameter
regimes (or the type of devices) where entanglement can successfully
be observed. In order to target systems that can succeed in demon-
strating optomechanical entanglement, it is useful to specify a model
and make theoretical predictions. This corresponds to making choices
specifying some parameter regimes we think are favourable, as well as
a particular procedure: in Section 8.1 we present the parameter regime
we restrict ourselves to; in Section 8.2 we define particular temporal
modes to test for entanglement; and in Section 8.3 we explain how
entanglement can be tested given a certain measurement.

The resulting dynamical model is precisely that presented in Sec. 5.4
and the theoretical predictions for the protocol are presented in Ch. 9.
Interestingly, the model is simple enough that we can determine the
exact symbolic expression of the covariance matrix of the temporal
modes of the light in Sec. 9.1.1. Moreover, in Sec. 9.2 we derive
an approximate formula for the EPR-variance entanglement test, as
a function of the system parameters, that is concise enough to be
interpreted; with this formula we gain a better understanding of which
devices can demonstrate stationary optomechanical entanglement and
why.

summary of results

The results of this part are:

9. We call it a "theorem" because it is essentially a mathematical statement – that
comes with premises, conclusion, and a rigorous proof – which is central to our work.
In the broader context of quantum information science, it would probably not bear
the status of a theorem.
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• An entanglement verification theorem providing general circum-
stances under which optomechanical entanglement can be inferred
from measurements of the light only, see Ch. 7.

• The formulation of a concrete protocol applicable to a wide range
of parameter regimes; see Ch. 8.

• The symbolic integral form for the covariance matrix of the tem-
poral modes σtm Eq. (9.11) according to the protocol, as well as its
exact integration (when Tsep = 0); see Sec. 9.1.2 and [Gut24].

• An approximate expression of the EPR-variance entanglement test
Eq. (9.27).

• Systematic comparison of the accuracy of the approximate formula
with the exact result; see Sec. 9.3.

Various limiting cases are discussed, and we find that, for practical
purposes:
• The temporal modes bandwidths must be larger than the total

dynamical rate (i.e. the sum of readout and thermal noise rates):
Γ > Γ tot

1 Eq. (9.35) is necessary for entanglement detection with the
EPR-variance.

• Larger cooperativity leads to larger separability violations: see
Eq. (9.45) in Sec. 9.4.1.

• Whenever effects from a spectator mode are not relevant, a suffi-
cient condition for entanglement detection with the EPR-variance
is Γ tot

1 < 2ω1/(3 3
√

2Q11) Eq. (9.46a).
• Finite delay Tsep > 1/κ between the temporal modes does not

prevent entanglement detection. Moreover, when Tsep = π/(2ω1)

entanglement detection is more robust; see Sec. 9.4.3.
• The uncertainty of the mechanical frequency δω (reflecting the

uncertainty of the demodulation frequency of the temporal modes)
must fulfil δω < Γ/

√
n1(C1 + 1) Eq. (9.48). This a (stringent) con-

straint on the stability of the mechanical frequency over a measure-
ment.

• When the spectator mode contribution dominates, Eqs. (9.50) give
a sufficient condition for entanglement detection

3 Γ tot
1 <

g1

g2

∆ω√
3n2(C2 + 1)

.
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H E U R I S T I C I D E A S A N D B A S I C I N T U I T I O N

Optomechanical devices are prototype position sensors: the (mech-
anical) surface reflecting the light is the object being measured; the light
inside and outside the cavity with the detector form the measurement
apparatus. (Unitary) quantum dynamics lead to entanglement between
the output light and the mechanical motion: these (quantum) correla-
tions between measured object and measurement apparatus are the
way information is encoded, amplified, and transported in a von Neu-
mann measurement model – and this is precisely the optomechanical
entanglement we want to detect. Recall our introductory discussion
in Sec. 1.4.

In order to certify entanglement between two parties, one must
characterise (maybe not fully) both parties separately. This is the diffi-
culty here because the state of the mechanical oscillator is not directly
accessible. It is accessible via the measurement with the light (the
apparatus) – which is indeed the reason for developing the position
sensor in the first place! Concretely, we have to establish entangle-
ment between mechanics and light with access only to the light; the
scheme is thus necessarily indirect. This is a fundamental problem
when studying apparatus–object entanglement in a von Neumann
measurement model, namely, the apparatus is the mean of extracting
information about the object so that one must look for correlations of
the apparatus with itself. This calls for being careful as one might ob-
serve strong correlations that are actually trivial (like autocorrelation
of the apparatus with itself for instance). Explicitly, we must extract
from the out-coming light the relevant information about its own state
and the relevant information about the mechanical oscillator’s state.
Then we must look for the appropriate correlations.

Our solution to this difficulty is based on the heuristic picture of
the optomechanical dynamics presented in Sec. 5.3.1 and is a natural
extension of the logic of the theoretical proposal to demonstrate op-
tomechanical entanglement in non-stationary pulsed regime [Hof+11b]
(which led to the experimental demonstration [Pal+13]). We explained
there that the optomechanical interaction has two parts: the two-mode
squeezer and the beam splitter, cf. Eq. (5.10). The former entangles the
cavity light with the mechanical motion. The cavity state is mapped
onto the output field so that the output mode and the mechanics are
entangled. The beam splitter interaction, on the other hand, coherently
maps the state of the mechanical oscillator and the cavity onto each
other. After this operation, the cavity mode encodes part of the state
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of the mechanics. Therefore, the cavity mode is entangled with the
output light at earlier times. The state of the cavity is subsequently
mapped onto the output field as well so that the entangled state,
originally formed by the mechanical oscillator and the cavity, has
been mapped onto the measurable output light at different times. It
is worth emphasising the temporal ordering of the operations: first
optomechanical two-mode squeezing generates the entangled state of
the mechanics and the light (escaping the cavity and propagating away
in the output mode); then the beam splitter interaction maps the state
of the mechanics onto the light, which ultimately also propagates away
from the cavity into the output mode. This suggests that selecting
temporally ordered modes of the continuous output light allows to
reveal (indirectly) the entanglement that existed between mechanics
and light.

In the stable steady-state, this cycle happens continuously in time,
hence the stationary nature of the entanglement. Also, for constant
and continuous driving (necessary for stationarity), both beam split-
ter and two-mode squeezing processes happen simultaneously (and
continuously), hence the sequence we depicted is a particular one, hap-
pening in parallel to all other possible sequences of these interactions
in the continuous dynamics.

In Section 5.3.1, we saw that two-mode squeezer and beam split-
ter scatter light at frequencies ∓ωm (respectively) from the drive’s
frequency, thus forming the red and blue sidebands (respectively).
We know that the photons on the lower sideband were produced by
the two-mode squeezing interaction – and are entangled with the
mechanics – and the photons in the upper sideband were produced by
the beam splitter interaction and encode the state of the mechanical
oscillator. Therefore, the first – or early – temporal mode of the output
field should extract information about the red sideband, while a sub-
sequent – later – temporal mode should extract information about the
blue sideband. We expect these two modes to share the entanglement
originally existing between the early optical mode and the mechanical
mode. In other words, the mechanical oscillator mediated the entangle-
ment between the early and late temporal modes of light. This logic,
in the stationary regime and involving temporal modes of the output
light retrieving information in both sidebands, was first formulated
by Jason Hölscher-Obermaier in his thesis [HO17].

One must make sure that it is true that observing entanglement
between temporal modes of the light is enough to infer optomechanical
entanglement and what are the conditions under which this inference
is possible. This is in essence the role of the entanglement verification
"theorem" presented in Ch. 7: it formalises these ideas and rigorously
guarantees that we can infer optomechanical entanglement from the
observation of entanglement in the light, whenever its premises are
fulfilled. This theorem is the core of the protocol.
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To motivate the necessity for this general theorem, we mention
the rather subtle – and daunting – phenomenon of "entanglement
mediation, without entanglement of the mediator". Consider three
systems A, B, and M; assume that they are originally in a separable
state; A and B never interact with each other, but they both interact
with the mediator M – this is a strict pairwise interaction between the
mediator and the other two systems. A and B can become entangled
via their interaction with the mediator in such a way that the mediator
is never entangled with either A or B. Refs. [Cub+03; MK08] provide
explicit protocols for this phenomenon, and experimental realisations
are reported in Refs. [Fed+13; Peu+13; Vol+13].

The logic we proposed above is the same: the early and late temporal
modes are systems A and B that do not interact with each other, and
the mechanical oscillator is the mediator; we propose to observe
entanglement between the temporal modes to infer entanglement
between the early light mode and the mediator. The phenomenon just
described is a particular case where the inference would be wrong:
because it is possible to entangle the early and late temporal modes
via their interaction with the mechanics, without the mechanics ever
becoming entangled with any of the temporal modes. We must make
sure that this situation is excluded. We will see that this requires
assuming that the three parties are in an uncorrelated product state
initially rather than in a separable state.
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A T H E O R E M T O I N F E R E N TA N G L E M E N T F R O M
M E A S U R E M E N T S

The following entanglement verification theorem applies to a scen-
ario where two systems (call them E for early and L for late) interact
pairwise and sequentially with a third system (call it M for mechnaics
or mediator). It relates entanglement between the parties E and L
to the entanglement between the mediator and the early system that
interacted first. First, we state and prove the theorem, and then relate
it to optomechanical scenarios of interest.

theorem Suppose the initial state (before any interaction) of the
three parties E, L, and M is uncorrelated (i.e. it is a product state).
Suppose also that system E interacts first with M, and only afterwards
does system L interacts with M – this a strict sequential and pairwise
interaction pattern. Then observing that E and L are entangled implies
that E and M must have been entangled after their interaction. The
panel at the bottom of Fig. 7.1 summarises this scenario.

proof The first requirement is that the initial state is an uncorrelated
product state

ρinit
EML = ρE ⊗ ρM ⊗ ρL. (7.1)

The interaction between E and M can be described, in general, by a
quantum channel EEM [NC10] that acts non-trivially on E and M only
– this is the second requirement that the interactions are sequential
and pairwise. If this quantum channel does not generate entanglement
between E and M, then

(EEM ⊗ IL)ρ
init
EML = EEM(ρE ⊗ ρM)⊗ ρL

=
∑
j

pjρ
j
E ⊗ ρjM ⊗ ρL. (7.2)

In this case, any subsequent channel EML acting on M and L cannot
generate entanglement between E and L: the final state is

ρfin
EML = (IL ⊗ EML)(EEM ⊗ IL)ρ

init
EML

=
∑
j

pjρ
j
E ⊗ EML(ρ

j
M ⊗ ρL)

(7.3)

and the reduced state of E and L is

ρfin
EL = trM

[
ρfin

EML

]
=

∑
j

pjρ
j
E ⊗ ρ̃jL (7.4)

64



theorem 65

where ρ̃jL = trM

[
EML(ρ

j
M ⊗ ρL)

]
. The state ρfin

EL is manifestly separ-
able. This is essentially a consequence from the fact that entanglement
cannot be created via local operations. It is the contraposed state-
ment which is useful to us: if ρfin

EL is entangled, then EEM must have
entangled parties E and M. This terminates the proof. 1

Figure 7.1 (top) The continuous light field (travelling to the left because the
time axis points to the right) can be decomposed into temporal modes via an
abstract modulation by mode functions fi. In general, the temporal profile at the
input of the device) is different than at the output. The shaded area is a temporal
separation between the modes. (middle) Two temporal modes are considered:
an early pulse (E) and a late pulse (L) defined by the mode functions fE and fL.
(bottom) The quantum circuit corresponding to the dynamics. The mechanical
oscillator (M); the early and the late pulses are initially in an uncorrelated state.
M interacts sequentially with E and then L according to the quantum channels
EEM and EML, respectively. Figure adapted from [Gut+20].

1. This proof is due to Klemens Hammerer. We also point out the critical contribu-
tion from Nathan Walk, who clarified for us that the initial state must be uncorrelated,
and that assuming separability (involving possible classical correlations) was not
strict enough.
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7.1 discussion of the theorem

The physical nature of the three parties is irrelevant for the proof;
also no assumptions about the form or effect of the channels EEM and
EML is necessary, so that any dynamics is allowed – not only stationary
optomechanical processes. Hence, details of device parameters are
not necessary. The restrictions are the two premises of the theorem:
uncorrelated initial state and strict sequential pairwise interactions.

The conclusion of the theorem is an implication, i.e. entanglement
between E and L is sufficient to infer entanglement between E and M,
but the converse is not true in general and this theorem says nothing
about the case when E and L are separable.

As explained in Ch. 6, the phenomenon of "mediated entanglement
without entanglement with the mediator" [Cub+03; MK08; Fed+13;
Peu+13; Vol+13] prevents from concluding the presence of optomech-
anical entanglement from detecting entangled light modes after inter-
action, in general. The premises of the theorem provide circumstances
in which it is possible. In the references above, the initial state of E, M
and L is separable but, crucially, it is (classically) correlated – i.e. it is
not a product state as required by the theorem; it is because we require
that the initial state is uncorrelated that we can write in general that
the action of EEM yields a separable state in Eq. (7.2). On the other
hand, in [Bar+19; Che+20] they observe entangled tones of the output
field, but cannot conclude the presence of entanglement of a tone with
the mechanics. In the light of our theorem, this is because they look at
simultaneous tones, thus not fulfilling the strict sequential pairwise
interaction constraint. Lastly, in the non-stationary pulsed protocol
[Hof+11a; Pal+13], the interaction between entangling and readout
pulses is strictly pairwise and the three parties are uncorrelated so that
the theorem applies – in this sense, the pulsed protocol is a particular
procedure using the theorem.

7.2 application of the theorem to optomechanics

A general protocol to demonstrate optomechanical entanglement
goes as follows. Take any optomechanical device and choose sequen-
tial and temporally non-overlapping modes E and L of the driving
cavity input field: these temporal modes and the mechanical mode
must be uncorrelated originally, and the temporal modes must interact
strictly pairwise and one after another with the mechanical oscillator.
For example, these modes could be sequential pulses sent to the device
as in the pulsed protocol of [Hof+11a; Pal+13], or they can be an ab-
stract temporal mode basis of the stationary continuous field, as we
used in [Gut+20] and in this thesis. Then, measure the transmitted
temporal light modes and test whether they are entangled: if they are,
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then the E mode was entangled with the mechanical motion; if they
are not, one can say nothing.

The choice of measurement depends on the entanglement test. In
the most common situation where the dynamics and the states are
Gaussian, tests like the Duan-criterion [Dua+00] or Simon’s PPT cri-
terion [Sim00] require measuring correlations of quadratures of the
temporal modes which can be achieved by homodyne detection.

In the stationary regime, where an optomechanical device is driven
by a continuous and constant light field, it is possible to decompose
the state of the driving field into a basis of orthonormal temporal
modes – that is modes with an explicit time dependence. This basis has
infinitely many elements and we can choose two of these elements and
call them ρE and ρL – they are the early (E) and late (L) temporal modes
we study. Mathematically, they are characterised by temporal profiles
described by functions fE(t) and fL(t) chosen so that the premises
of the entanglement verification theorem are fulfilled. In particular,
we can choose them strictly causal and non-overlapping, insuring
that they interact one after the other with the mechanical mode ρm.
Figure 7.1 (top) illustrates this idea. Additionally, the joint state of the
mechanics and any two non-overlapping temporal modes of light is
initially (i.e. far in the past, before interactions) in a product state. 2

These abstract pulses eventually come out of the device and one can
perform appropriate measurements to test whether they are entangled.
The transmitted temporal modes will, in general, be different from
the input modes because they are transduced by the cavity and the
mechanical oscillator. The output light is still a continuous field and
the choice of the temporal modes can be performed at the level of the
measurement: either by physical shaping and filtering of the light or
in postprocessing of continuous measurement data.

In the presence of a cavity, strict pairwise interaction based (only)
on causal and non-overlapping temporal modes is not strictly possible:
once the cavity is populated by the first temporal mode, the photon
population in the cavity will decay exponentially (at the rate κ of
the cavity linewidth), but it will (mathematically speaking) never be
exactly zero. Therefore, in this strict mathematical sense, there is
always some light from the early mode left in the cavity when the late
mode enters – this invalidates the sequential interaction requirement
of the theorem. We thus introduce a separation time Tsep > 0 between
the temporal modes. We choose Tsep ≳ κ−1 such that the photons
from the early mode have almost entirely left the cavity when the late
mode enters the cavity. Another way, arguably cleaner, to ensure the
strict sequential pairwise interaction is to restrict ourselves to devices
without cavities where the mechanical mode interacts directly with the

2. Note that the driving laser coherence time/length is a statement about the
phase of the coherent state, not about the correlation of second moments of the state.
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detected mode of the free field. Klemens Winkler showed that this is
possible and that the treatments and results are similar to what will be
presented in the next chapters. 3 All the derivations and results in this
Part ii of the document focus on optomechanical devices including a
cavity.

Defining the temporal modes in postprocessing is a flexible and
convenient technique, but we must point out an important (theoretical)
loophole: it relies on some knowledge of the device at hand. Given
the output temporal modes chosen in postprocessing, one must check
that the corresponding input modes fulfil the requirements of the
entanglement verification theorem, i.e. one must know how the latter
are transmitted by the device. Therefore, this technique cannot be
entirely agnostic of the device’s working and parameters. The scheme
we propose in the following uses this technique (Ch. 8).

If the dynamics and the states are Gaussian, a most versatile ap-
proach is to measure both quadratures of the output field continuously,
thus characterising its state fully. Then, the choice of temporal modes
can be performed flexibly on the measured data in postprocessing.
In practice, this corresponds to applying mode functions fE and fL

to the continuous records of both quadratures, thus defining records
of quadratures of the temporal modes. One can then estimate all the
entries of the covariance matrix of these temporal modes, which is a
complete description of their state (cf. Sec. 3.2). Finally, one can test
for entanglement with any known criterion, witness, or measure; cf.
Sec. 3.4 on Gaussian entanglement tests.

3. The details will be presented elsewhere. We consider a cavity-free device in
Part iii of this work, where we discuss real setups and analyse experimental datasets.
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P R O P O S A L O F A N E X P L I C I T E X P E R I M E N TA L
P R O C E D U R E

In Section 7.2, we sketched how a general protocol for detecting
optomechanical entanglement using our entanglement verification
theorem might look like. In this chapter, we make some choices and
trade generality for definiteness that allows us to model the procedure
and make theoretical predictions on the feasibility of the protocol –
the derivation and presentation of these predictions are presented in
the next chapter.

We want to describe a wide variety of optomechanical devices
operating in broad parameter regimes. Also, we aim for an accurate
model that remains simple enough to be solved; even better, we would
like efficiently computed solutions for fast parameter sweep. In the
best case, we can extract general behaviour of the protocol and physical
insights of how entanglement is being detected. It turns out that all of
these points can be met simultaneously.

8.1 restriction of parameter regimes

To the best of our understanding, the most favourable parameters
for the stationary entanglement detection are exactly those of our
open-system model of cavity optomechanical devices in Sec. 5.4. We
review them quickly here, emphasising how they serve the logic of
entanglement detection of Ch. 6 and with respect to the theorem.

Because it has not been demonstrated yet, we target stationary
optomechanical entanglement. We thus restrict ourselves to stable
parameter regimes, ensuring the existence of a stable steady state, and
we assume that the system has reached it. Stability is assessed using
the Routh-Hurwitz criterion; see [Hof15, Sec. 1.3.1] and [Gen+08] or
the discussion in App. C.2. In terms of time-dependent operators in
the Heisenberg picture subject to fluctuations (open-system dynamics),
we speak of a stationary regime when their statistics are invariant under
time translation. In this work, the stationary regime also means that all
the parameters entering the dynamics are fixed: i.e. no modulations
of the parameters like drive power or frequency.

69
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To minimise noise due to coupling to an environment (cf. Ch. 4),
we target mechanical oscillators that are well decoupled from their
environment, i.e. with high mechanical quality factor [cf. Eqs. (5.2)]

Q1 = Q11 :=
ω1

γ1
≫ 1. (8.1)

This is the multiple-mechanical modes notation of Eq. (5.16); in a first
approach, we do not think about additional mechanical modes.

In Sec. 5.4, assuming high temperature of the mechanical bath(s)
Eq. (5.17) leads to associated Markovian noise on the oscillator [GV01],
which greatly simplifies the calculations. For this reason and also
because it is a realistic and more accessible (i.e. wide-spread regime
for experiments) experimental regime, we assume a highly populated
thermal bath of the targeted mode

n1 ≈ kBT1
 hω1

≫ 1. (8.2)

In [Gen+08; MDC10], it has been shown that stationary optomechan-
ical entanglement persists for high bath occupations – in this sense
it is "robust" against thermal decoherence – and it is reasonable to
expect to detect it in this regime. 1

Strong coherent optomechanical interaction is an intuitive require-
ment for generating entanglement, e.g. in the sense that it leads to
larger cooperativities Eq. (5.24c). As in Sec. 5.3, we assume that the
dressed coupling g1 Eq. (5.8) is much larger than the single photon
coupling g0,1 of the targeted mechanical mode

g1 ≫ g0,1. (8.3)

This corresponds to driving the device with an intense laser, which
is common in practice. In that regime, the linearised optomechanical
interaction Hamiltonian Eq. (5.9) is accurate and the dynamics are
Gaussian (which is an important simplification).

In Section 7.2, we introduced a delay Tsep ≳ κ−1 to mitigate the
optomechanical interaction overlap of early and late modes due to the
cavity. On the other hand, we expect entanglement to diminish in time
as a result of decoherence. Partly for that reason, we restrict ourselves
to broad linewidth cavities, so that κ−1 is the shortest time scale of the
dynamics. Consequently, Tsep can be accordingly short. In this broad
cavity limit, the temporal modes at the input of the optomechanical

1. As commented in Sec. 5.3.1, light and mechanics can become entangled, al-
though the mechanical state is highly thermal, because applying the two-mode
squeezing on a joint thermal and vacuum state leads to an entangled state for
any finite squeezing and independently of temperature of the thermal state;
see [MMS03] and our calculation in [Gut24, TMS passive losses .nb] (file path:
Thesis_CGut_StationaryOptomechanicalEntanglement/chapter_structure/

Happ_AnalysisPipeline/TMS_passiveLosses.nb).



8.2 choice of temporal mode filters 71

device are not significantly altered after their transmission by the
device. Therefore, one can define the temporal modes on the recorded
data in postprocessing (i.e. at the output) and assess whether they
satisfy the entanglement verification theorem’s requirements (which
is on the modes at the input). Lastly, as we argued in Ch. 6, we
intend to extract information about both sidebands, therefore the
cavity linewidth must be large enough for a significant part of the
sidebands to be present at the output; see Fig. 5.2. This corresponds
to working in the sideband unresolved regime where 2

κ≫ ω1. (8.4)

Non-zero detuning ∆ of the drive compared to the cavity enhances
one sideband or the other [AKM14]. But with our reasoning, there is
a priori no reason to enhance one sideband compared to the other, 3

hence we consider the zero detuning case so that red and blue side-
bands have equal contributions in the output mode (see Fig. 5.2)

∆ = 0. (8.5)

In that case, the system is unconditionally stable [Hof15, Sec. 1.3.1].
κ≫ ω1 and ∆ = 0 is the typical operation regime of a position sensor.

We note that in the narrow cavity linewidth regime, one could study
a drive with two frequencies (tones), one on each sideband, with the
optomechanical interaction scattering light at the cavity resonance.
Then one would look at the temporally separated modes at that
frequency and assess their entanglement, similar to the pulsed protocol
for optomechanical entanglement [Hof+11a; Pal+13] and the stationary
entanglement between temporal modes of the output light [Bar+19;
Che+20]. We have not studied this scenario.

8.2 choice of temporal mode filters

We present here a choice of two temporal profile functions that we
call fE and fL; they define the early (E) and late (L) modes introduced
in Ch. 7. They are two elements of a basis of time-dependent modes
that can express the output light mode given by the annihilation

2. Note how, in the QLE Eqs. (5.14), κ and γ1 have the same dissipation role.
Yet we choose here that they are the shortest and longest time-scales of the system.
This relates nicely to the different nature of their baths as discussed in Ch. 4: one
is pure noise, while the other is measured and delivers information to the observer.
Additionally, this limit looks counter-productive according to the intuition that
cooperativity should be large (or maximised). I suggest that this is an early indicator
that this intuition is not particularly useful in terms of entanglement detection with
our protocol.

3. The exact calculation says otherwise: in App. G, we will see that some red de-
tuning improves the EPR-variance and the logarithmic negativity detection sensitivity.
We have currently no (heuristic or rigorous) insight as to why it is the case.
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Figure 8.1 Mode functions of Eqs. (8.7): they are temporally ordered and non-
overlapping as required by the entanglement verification theorem of Ch. 7. They
are orthonormal as required by Eq. (8.12), and they are pulse-shaped to account
for decoherence. The early pulse (in red) has a raising exponential time envelope
and is resonant with the red sideband at −ω̄ = −ω1. The late pulse (in blue) has
an exponentially decaying envelope in time and is resonant with the blue sideband
at +ω̄ = +ω1. Figure reproduced from [Gut+20].

operator cout(t) (Heisenberg picture). We define the annihilation
operator of a temporal mode, specified by a mode function fα(t),
α = E,L, as

cα :=
∫∞
−∞ dt fα(t)cout(t) (8.6)

This is essentially a weighted sum of cout(t) at different times. We
choose the following explicit form for fE and fL, with three parameters
ω̄, Γ , and Tsep,

fE(t) := Ne−iωEtΘ(−t− Tsep/2) (8.7a)

fL(t) := Ne−iωLtΘ(t− Tsep/2) (8.7b)

with

ωE := ω̄+ i Γ (8.7c)

ωL := −ω̄− i Γ = −ωE (8.7d)

where

N :=
√

2ΓeΓTsep/2 (8.7e)

is the normalisation constant, and Θ is the Heaviside step function.
They are hulls that decay exponentially at rate Γ , for demodulations
at frequencies −ω̄ and +ω̄, and spaced by a duration Tsep; they are
depicted in Fig. 8.1.

As we argued in Ch. 6, we will choose ω̄ close to ω1 to demodulate
the sidebands of the output field. In practice however, one should
expect that ω1 is not known perfectly so that

ω̄ = (1 + d)ω1 = ω1 + δω (8.8)

where we expect |d| ≪ 1. Both modes have equal duration scaled
by Γ . The inter-mode delay Tsep > 0 addresses the issue of light
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trapped in the cavity preventing the strict pairwise interaction required
by the entanglement verification theorem to infer optomechanical
entanglement; see Sec. 7.2. Because we assume a stationary output
field, one can choose an arbitrary reference for time: here, we chose
the origin at t = 0 and the mode functions are symmetric around it
so that fE(−t) = fL(t). These mode functions were first proposed and
discussed by Jason Hölscher-Obermaier in his Ph.D. thesis [HO17,
Ch. 5.3].

fα are orthonormal, which implies that cα can be interpreted as
the annihilation operator of the temporal mode α satisfying canonical
commutation relations Eq. (2.19), α = E,L,[

cα, c
†
α

]
= 1. (8.9)

See also Eq. (8.12) below and the discussion of orthonormality that
leads to it. This is a crucial property of the temporal mode oper-
ators that allows to use the continuous-variable formalism and the
associated toolbox of Ch. 3 to describe states and test for entanglement.

In the broad cavity limit, where κ is the fastest time scale of the
dynamics, the temporal profiles at the input of the optomechanical
device are almost the same; as discussed above Eq. (8.4). The Heaviside
function ensures that they are non-overlapping and ordered in time
so that they interact sequentially and pairwise with the mechanical
oscillator. Disjoint temporal modes of light are uncorrelated before
the interaction. Therefore, the requirements of the theorem are met.

Because of decoherence, we expect entanglement between time bins
to decrease with the duration of their separation, hence the fαs give
more weight to parts of the mode functions that are close in time.
Among all possible forms of decay, we chose an exponential with
decay rate Γ for both modes E and L; it is the same for both modes
for mathematical convenience only. Γ is a free parameter that we can
adjust and optimise in the procedure. It scales the effective duration
of the temporal modes and, in frequency space, it is associated with a
Lorentzian bandwidth (HWHM); see Eqs. (8.10a) below. This choice
of exponential hull is consistent with the natural decay response of a
cavity. Moreover, in [MDC10] (and partly in [Dir+24]) they derive the
temporal mode of light sharing maximum amount of entanglement
with the mechanical mode: it turns out to be the same as fE above.

Generally speaking, we do not know how good our mode functions
Eqs. (8.7) are: from experience we know that some choices are much
worse, but we also know that other mode functions yield larger vi-
olations of particular entanglement witnesses (e.g. we discuss that
multi-mode evaluations of experimental data are systematically better
and show examples in Ch. 11). Ultimately, our theoretical predictions
are that entanglement can be detected with these temporal modes, but
they are probably not optimal. As of this day, we are not aware of any
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way to find (or decide) what are the modes that are best for detecting
entanglement with our scheme, and this question is actively being
studied.

In Sec. 5.4 we expressed the solutions of the QLE model in frequency
space [see our conventions for the Fourier transform Eqs. (C.8)], hence
we give here the Fourier transform of the mode functions for later
reference

fα(ω) = F[fα]ω =
Nα(ω)

ω−ωα
(8.10a)

with

NE(ω) := −i
√
Γ/π ei (ω̄−ω)Tsep/2 =: −NL(−ω) (8.10b)

and ωE, ωL are as in Eqs. (8.7). They have symmetry fE(ω) = fL(−ω).
Their modulus squared are Lorentzian 4 with first moments ±ω̄, re-
spectively, and HWHM Γ . In this frequency representation of the
temporal modes, we think of them as (Lorentzian) filters at frequencies
±ω̄ and with bandwidth Γ .

8.2.1 Multi-mode temporal filters

In principle, one can choose a set of (infinitely many) temporal
profiles {fα : α = 1, 2 . . . } and corresponding operators of the field
outside the cavity cα, given by Eq. (8.6). The set {cα}∞α=1 of temporal
modes spans the Hilbert space of the output light field so that, at
each time t, there are coefficients ct(α) such that one can express the
output field operators in terms of the cα

cout(t) =
∑
α

ct(α)cα. (8.11)

Choosing (or changing) temporal modes corresponds to choosing a
new set to express cout. In selecting one (or more) temporal modes,
we pick particular components of the output field. Notice how the
time t is a label for states, but the underlying basis of temporal modes
is fixed.

If we want to interpret cα as the annihilation operator of the tem-
poral mode labelled α, they must fulfil canonical commutation rela-
tions Eq. (2.19)[

cα, c
†
β

]
= δαβ

[
cα, cβ

]
=
[
c†α, c

†
β

]
= 0. (8.12a)

This amounts to requiring that the mode functions are orthonormal
with respect to the L2 inner product

fα · fβ =

∫∞
−∞ dt f∗α(t)fβ(t) = δαβ. (8.12b)

4. Also termed Cauchy probability density function.
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If the set {fα} of orthonormal functions also spans the space of func-
tions L2, then it forms a basis. Because ladder operators are not
Hermitian, the mode functions can be complex.

With these considerations, we can generalise the mode functions to
account for several components of the light split between a collection
of early and late modes, with the only constraint of being orthonormal.
This was explored in [HO17, Sec. 5.6] where they proposed additional
early and late modes to incorporate setups with multiple mechanical
modes. We used this technique to study experimental data and we will
discuss the effect in Sec. H.4 and show examples in Ch. 11. Importantly,
although more than two temporal modes are involved in such a
generalisation, it is still bi-partite entanglement between the set of
early and late modes that needs to be characterised.

8.3 choice of entanglement tests

As a last step in designing a specific protocol, we discuss tests for
detecting entanglement in the measurable light. That is, the bipartite
entanglement between the early (E) and late (L) temporal modes
introduced in the entanglement verification theorem and completely
specified by the functions fE and fL in Eqs. (8.7). In general, the choice
of entanglement test specifies what information must be obtained
by the experimental procedure, i.e. what measurement(s) must be
performed. Technologies in quantum optics laboratories allow to
measure both quadratures of light continuously and simultaneously
at level of their vacuum fluctuations – thus characterising a stationary
state of light completely. This is not prohibited by the Heisenberg
uncertainty relation Eq. (2.9), as long as the bound is satisfied by the
measurements results (or the estimable state) [WM09]; see App. F.3
for a discussion and an example of implementation called "dual-rail
homodyne detection".

We thus assume that the full state of the light is continuously
measured. Because the initial states (of the mechanics and the light),
the noise processes, and the dynamics are Gaussian, the output field
and its associated temporal modes are Gaussian too; cf. Sec. 3.3 on
Gaussian maps. This means that the bi-partite state of the temporal
modes is completely characterised by its covariance matrix σtm (in
the displaced frame where the first moments are zero at all times); in
particular, entanglement of the state is completely determined by σtm.
See Appendix H or [HO17, Ch. 5] for an explicit description of how to
compute σtm from a record of continuous quadratures-measurements.
Because we have access to the entire covariance matrix of temporal
modes, we can choose any bi-partite test of Gaussian entanglement –
for instance those discussed in Sec. 3.4 or more generally in [ARL14].
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Before we discuss which tests are best in the scenarios we are inter-
ested in, we take a step back and comment on the type of statements
we can make about optomechanical entanglement from observing
entanglement in σtm. The entanglement verification theorem provides
a sufficient inference: entanglement between the temporal modes of
light implies optomechanical entanglement. Therefore, using a neces-
sary and sufficient criterion to determine whether the temporal modes
are entangled or not does not transfer to the entanglement between
the mechanics and the light. In particular, demonstrating that the
temporal modes are not entangled does not allow to conclude that
the mechanical mode and the light were not entangled. Similarly, any
quantitative measure of entanglement in σtm does not allow to make
(direct) quantitative statements about optomechanical entanglement.
In this sense, there is no informational gain in using a powerful (and
typically complicated) measure to characterise entanglement in the
light versus using a less powerful (and relatively simple) sufficient
criterion. From an experimental point of view, however, it is advant-
ageous to use the most powerful or sensitive test possible in order to
detect as many entangled states of the temporal modes as possible
– thus increasing the probability of success. Moreover, tests leading
to large violations of their separability bound leave more margin
for unavoidable experimental imperfections. In addition, theoretical
quantitative information about the amount of detectable entanglement
in the light is useful to optimise the regime of operation and the
parameters of the protocol.

In our work, we looked at the three tests introduced in detail in
Sec. 3.4: the EPR-variance, a state-dependent optimised witness, and the
logarithmic negativity.

The EPR-variance (∆EPR) was defined in Eq. (3.13); it is a witness
based on second moments that is sufficient for entanglement in σtm. Its
(relatively simple) mathematical form leads to expressions that we will
work out analytically in Ch. 9. Under some simplifying assumptions,
we provide in Sec. 9.2 an explicit approximate expression for ∆EPR

that is concise enough to be interpreted. Because it is (only) sufficient
for entanglement, the predictions from this model underestimate the
experimental capabilities of a given system.

Given the state σtm, one can compute an optimal witness that de-
termines whether it is separable or not; see Sec. 3.4.2 and Ref. [HE06].
The optimisation is numerical, therefore it is not directly useful in the
analytical treatments of Ch. 9. Because it is of the same nature as ∆EPR,
we compare them in Sec. 9.2 and assess the sub-optimality of ∆EPR.
In Part iii, where we discuss the application of the protocol to study
real experimental setups, we prefer to use the optimised witnesses
because it is also necessary and sufficient when the temporal modes
have internal structure (multi-mode evaluation). Moreover, our data
analysis pipeline involves witness cross-validation to mitigate biases
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from statistical errors, and the bootstrap method to estimate errorbars:
both were developed for the optimal witness. Details are provided in
Secs. 11.1,H.8, and H.9.

Finally, we also use the logarithmic negativity (cf. Sec. 3.4.4) to
predict the amount of entanglement for the parameters of candidate
experimental setups in Chs. 10, 11, and App. G. For Gaussian states,
the separability violation of an optimised witness is an upper bound on
the logarithmic negativity [HE06], hence we treat them as equivalent,
which is not necessary in principle, but facilitates the numerical study.
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T H E O R E T I C A L M O D E L A N D P R E D I C T I O N S

This chapter presents a theoretical model of the protocol described
and specified by the choices made in Ch. 8. We solve that model
and present its predictions in terms of detectable entanglement. The
main results are the theoretical demonstration of feasibility for broad
realistic experimental parameter and noise regimes, as well as insight-
ful formulae providing physical understanding and general limits on
parameters to detect entanglement.

All relevant symbolic and numerical calculations in this chapter
are also performed in a Mathematica notebook [Gut24, Theoretical
predictions derivation .nb] 1. Importantly, all exact mathematical sim-
plifications and reformulations of expressions were systematically
verified in the notebook. Approximations were systematically tested
numerically for those set of parameters deemed relevant. In the fol-
lowing, we present an overview of the derivation with a focus on
concepts, results, and interpretations; necessary technical details are
given in App. E.

The structure of this chapter is as follows. From the explicit symbolic
expression for the light output operators in frequency space Sec. 5.4 we
compute its covariance matrix σout(ω). We then express the covariance
matrix of the temporal modes σtm as an exact analytical integral over
frequency. Under certain circumstances, this integral has an exact
closed-form mathematical expression with finitely many symbols. We
approximate σout and perform the integral by hand with the residue
method to find a concise closed-form approximate formula for the
EPR-variance, which can be interpreted physically. We study the
predictions and limits of this formula in detail and establish constraints
on the parameter regimes where entanglement can be detected with
our protocol.

1. A PDF printout of the notebook and a parsable plain text file are available for
readers who cannot use Mathematica. File path:
Thesis_CGut_StationaryOptomechanicalEntanglement/chapter_structure/

9ch_TheoreticalPredictions/TheoreticalPredictions_derivation.nb
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9.1 state of measurable temporal modes

9.1.1 Exact symbolic expression

Our starting point is the solution for the output light operators
rout(ω) Eqs. (5.23) for the open-system optomechanical model of
Sec. 5.4; the details of the solutions along with important conven-
tions are given in App. C.2.

We define early (E) and late (L) temporal mode operators of the
output light Eq. (8.7). The time overlap of rout = (cout, c

†
out)

T with the
mode profiles fα Eqs. (8.6), α = E,L, is converted to an overlap in
frequency with Plancherel’s theorem

cα =

∫
dωfα(−ω)cout(ω), c†α =

∫
dωf∗α(ω)c†out(−ω). (9.1)

We changed variables ω → −ω so that the argument of c†out is −ω,
complying with our convention on the operator adjoints in Fourier
space Eq. (C.8c). These relations are true for any function fα (provided
it has definite L2-norm and can be Fourier transformed).

The temporal mode filter functions fE and fL retrieve information
about the first mechanical mode at ω1 – we call it the target mode. 2

The mode functions considered here are not designed to extract in-
formation about the second mode at ω2; hence, it is basically not taken
into account in the analysis, and we call it the spectator mode.

Ideally, ω1 is known perfectly and the filter functions can be tuned
to it perfectly with

ω̄ = ω1 (9.2)

in Eqs. (8.7). In practice, we expect finite accuracy on ω1, possibly
limited by a combination of finite measurement statistics and drifts of
the mechanical resonance over the course of a measurement run. This
is modelled by imperfectly tuned filters with ω̄ = ω1 + δω, where
δω = ω1 d and |d| ≪ 1; cf. Eq. (8.8). We want to model a situation
where the filters still extract information about the sidebands; hence
we assume δω < Γ , so that the sidebands still fall in the bandwidth of
the Lorentzian filters.

We define 2-by-2 mode functions matrices Fα (α = E,L)

Fα(ω) =

(
fα(ω) 0

0 f∗α(−ω)

)
. (9.3)

They are diagonal in the ladder operator representation, but not in the
quadrature representation. Taking advantage of the diagonal form,

2. This target mode is typically defined by the property g1 > g2 – in the sense
that it is the one best coupled to the light. But there could be other considerations
involved like the decoherence rate for example.
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we label both entries Fα,a, with a = 1, 2. Using Eq. (9.1), the 2-vector
describing a temporal mode is

rα :=

(
cα

c
†
α

)
=

∫
dωFα(−ω)rout(ω). (9.4)

The minus sign in the argument of the mode functions reminds us of
the underlying Fourier transform conventions Eqs. (C.8).

We extend the definition of the mode-function matrix Eq. (9.3) to
early and late modes. The joint state of both modes is a 4-vector rtm,
hence the matrix of mode functions acting on the 2-vector of (cavity)
output operators rout must be of rectangular 4-by-2 type: we define

Ftm(ω) :=

(
FE(ω)

FL(ω)

)
=


fE(ω) 0

0 f∗E(−ω)

fL(ω) 0

0 f∗L(−ω)

 (9.5)

where we stacked the 2-by-2 matrix of each mode function. Using
the explicit matrix form Eq. (5.23a) for rout, the 4-vector of ladder
operators of the E and L temporal modes is thus given by

rtm =

∫
dωFtm(−ω)

[
−Nout(M+ iωI)−1Nin +Nfdtr

]︸ ︷︷ ︸
:=M(ω)

n(ω). (9.6)

The rectangular 2-by-6 matrix M, mapping the input on the output
fields, is a short-hand notation for later. The form of this expression is
valid for both ladder and quadrature representations, but the explicit
form of all the matrices must be adapted accordingly; see Sec. C.1 for
details.

We are now in a position to compute the 4-by-4 covariance matrix
σtm of the state of the E and L modes. The Gaussian nature of the
state is unaltered by expressing it in a particular basis of temporal
modes. Hence, the joint state of temporal modes is Gaussian, with
zero means in the displaced frame in which we are working. Then,
the state is entirely determined by its second moments that form the
covariances, and we say that σtm is the state of the temporal modes of
light. From the definition of the covariances Eq. (3.8c) we write

σtm =
〈
rtmrTtm

〉
sym (9.7)

where ⟨□⟩sym is the symmetrised quantum mechanical expectation
value. From Eq. (9.6) we find

σtm =

∫
dωdω ′Ftm(−ω)M(ω)

:=D(ω,ω ′)︷ ︸︸ ︷〈
n(ω)nT (ω ′)

〉
sym

×MT (ω ′)FtmT
(−ω ′)

=

∫
dωdω ′Ftm(−ω)σout(ω,ω ′)FtmT

(−ω ′).

(9.8)
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We defined the 2-by-2 covariance matrix of the output light

σout(ω,ω ′) :=M(ω)D(ω,ω ′)MT (ω ′) (9.9)

with the correlation matrix of the baths operators

D(ω,ω ′) = Dδ(ω+ω ′) (9.10)

that encodes the white-noise models of the mechanical environments
Eqs. (5.18) (valid when n1, n2 ≫ 1) and of the cavity environment
Eqs. (5.15); see App. C.4 for the derivation of D(ω,ω ′). We replace
the latter in Eq. (9.8) and integrate over the Dirac delta to find

σtm =

∫
dωFtm(−ω)σout(ω,−ω)FtmT

(ω). (9.11)

The matrix product σout(ω,−ω) can be computed explicitly and we
find

σout(ω) = S(ω)

(
0 1

1 0

)
+ [C(ω) +X(ω)]

(
−1 1

1 −1

)

+ R(ω)

(
1 0

0 −1

)
+ I(ω)

(
0 −1

1 0

) (9.12)

with

S(ω) :=
|S(ω)|2

2
=

1
2

(9.13a)

C(ω) := 4
2∑

j=1

g2
j

[
4g2

j

∣∣χopt(ω)
∣∣2 + γjnj

]
×
∣∣χopt(ω)

∣∣2∣∣χj(ω)
∣∣2 (9.13b)

R(ω) := 4i
2∑

j=1

g2
j

∣∣χopt(ω)
∣∣2 Re

[
χj(ω)

]
= 2i

2∑
j=1

g2
j

(ω2
j −ω

2)

ωj

∣∣χopt(ω)
∣∣2∣∣χj(ω)

∣∣2 (9.13c)

I(ω) := 4
2∑

j=1

g2
j

∣∣χopt(ω)
∣∣2 Im

[
χj(ω)

]
= 2

2∑
j=1

g2
j

γjω

ωj

∣∣χopt(ω)
∣∣2∣∣χj(ω)

∣∣2 (9.13d)

X(ω) := 16g2
1g

2
2
∣∣χopt(ω)

∣∣4 Re[χ1(ω)χ∗2(ω)]

= 8
g2

1g
2
2

ω1ω2

[
(ω2 −ω2

1)(ω
2 −ω2

2) + γ1γ2ω
2]

×
∣∣χopt(ω)

∣∣4|χ1(ω)|2|χ2(ω)|2.
(9.13e)
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These expressions are also valid for a single mechanical mode: in
that case g2 = 0 and only those terms with index j = 1 contribute.
In particular, the function X is zero. The constant S is the sum of
the cavity input noise in the output channel and its reflection by the
cavity – it is the shotnoise contribution discussed at the end of Sec. 5.4.
It is a white-noise component to the output state (i.e. a constant in
frequency space), which leads to unphysical infinity when integrated
over all frequencies; 3 we will see later how the finite bandwidth of
the filtering mode functions regularise this behaviour. The function
X combines contributions from both modes. It appears because both
mechanical modes interact with the same cavity mode – in particular,
this term does not appear in cases without cavity. 4

In the ladder operator representation, the expression for σtm is given
compactly with four tensor indices: σtm

αβ,ab, where α,β = E,L and
a, b = 1, 2. The Greek indices indicate the four 2-by-2 blocks of the
full 4-by-4 σtm matrix. They correspond to the different sectors of
combinations of temporal modes. For example, σtm

EE refers to the top
left block of the covariance matrix and corresponds to "intra"-temporal
mode correlations of the early mode (it is the "early mode sector"), and
σtm

LE is the bottom left block corresponding to "inter"-mode correlations
between late and early modes (it is the "late–early sector"). The indices
a, b determine the entry of each 2-by-2 sector and are directly related
to the entries of the output field covariance matrix σout from Eqs. (9.9)
and (9.12). For example, σtm

LL,22 is the entry (4, 4) of σtm and σtm
EL,21 is

the entry (2, 3). We write Eq. (9.11) as

σtm
αβ,ab =

∫
dωFtm

α,a(−ω)σout
ab(ω,−ω)Ftm

β,b
T
(ω) (9.14)

where

Ftm
µ,m(ω) := diag

[
fµ(ω), f∗µ(−ω)

]
m

=

fµ(ω) if m = 1

f∗µ(−ω) if m = 2
(9.15)

according to Eq. (9.3). This notation works with a single indexm = 1, 2
because the matrices Fµ are diagonal in the ladder operator represent-
ation.

σout given by Eq. (9.12) is an exact closed-form expression for the
state of the output light field. σtm given by Eq. (9.14) [or Eq. (9.11)]
is an exact symbolic expression for the state of the temporal modes.
It is not in closed form because the solution of the integral might
not be; 5 this integration prevents further exact analytical calculations

3. Indeed, white-noise processes are necessarily unphysical models with infinite
energy distributed as, equal, finite contributions at each frequency component.

4. This was derived by my colleague Klemens Winkler and the corresponding
developments will be made available elsewhere.

5. We use a somewhat customised jargon here: a "closed-form" expression is
composed of a finite number of symbols that can be evaluated to a numerical value
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in general. In the next section, we discuss how the integration can
be performed analytically and how the result bears a closed-form
symbolic expression.

9.1.2 Symbolic integration over frequencies

The integrand Ftm(−ω)σout(ω)FtmT
(ω) of Eq. (9.11) is a 4-by-4 mat-

rix where each entry is of the form∫∞
−∞ dω

g(ω)

h(ω)
e−iωTsep (9.16)

with g and h polynomials in ω of order Ng and Nh, respectively. Un-
der certain conditions on the form and order of g and h, this integral
has a closed-form analytical solution ([GZ15, entry 3.11.2, 8th edition]
or [Hof15, app. B.5]). Details and usage are presented in App. D.1; see
also our implementation in [Gut24, Theoretical predictions derivation
.nb] 6. Here, it is enough to say that it applies to all configurations
treated in this thesis, whenever Tsep = 0. This is how we obtain the
exact symbolic expression of σtm in the following. The resulting sym-
bolic expression is too large and cumbersome to be interpreted, but
it can be efficiently evaluated with numerical values of the system
parameters. We make five comments on the usage and results of this
exact integration formula.

First, the limitation Tsep = 0 implies that this method is useful (in the
context of our protocol) only in the limit where the cavity decay κ−1 is
the fastest time scale (cf. Sec. 7.2). Then, the detectable entanglement
does not change appreciably for small but finite Tsep ≳ κ−1 (or larger);
we see in Sec. 9.4.3 that it is the case for the EPR-variance.

Second, the exact integration is a mathematical formula for the sym-
bols forming the integrand. In this sense, the integration is agnostic of
the value or meaning of the parameters and it applies whenever the
mathematical constraints are met. It is thus on us to make sure that we
use parameters consistent with the derivation that led to the integral
(cf. Ch. 8): in particular, the dynamics must be stable, the linearised
Hamiltonian must be accurate (strong drive such that gj ≫ g0,j), the
Markovian bath model must be accurate (nj ≫ 1), etc.

Third, in order to keep expressions concise in this document, we
present only the case of resonant drive (∆ = 0). Therefore, the ex-
pression of σout, derived in Sec. 9.1.1 in terms of S, C, R, I, and X
[Eqs. (9.13)], is not valid when ∆ ̸= 0. Nevertheless, it is possible to
set ∆ ̸= 0 in the system matrix M and obtain the corresponding σout

relatively easily – e.g. it contains no integrals, infinite sums, or operation that cannot
be computed directly efficiently on a computer.

6. File path: see footnote 1.
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Eq. (9.9). Integrating σtm Eq. (9.11) with the formula thus yields the
exact symbolic expression for a detuned drive.

Fourth, other choices of mode functions would still comply with
the formula, as long as their Fourier transforms are polynomials of
order -1/2 at most; see App. D.

Lastly, the symbolic results from the formula are, in our experience,
very large and cumbersome expressions; their size prevents extracting
information or physical understanding from them directly. This is
why we make approximations in the next section and derive a concise
but approximate formula for the EPR-variance, testing entanglement
in σtm. We use the exact integration to give quantitative estimations of
the accuracy of the approximate results in Sec. 9.3.

The complex analysis residue integration method (see standard
textbooks like [Mar19, Ch. 9]) offers another systematic way to perform
the integrals in σtm

αβ,ab Eq. (9.14) analytically; details and comments
on how we use it are given in App. D.2. For all the cases treated below
(including finite Tsep > 0), every integral σtm

αβ,ab Eq. (9.14) is

σtm
αβ,ab =

∫∞
−∞ dω Iαβ,ab = 2πi

∑
p+

Res
[
Iαβ,ab, p+

]
(9.17)

where p+ are the poles of the integrand I with positive imaginary parts
(the integration contour is always a half-circle in the upper complex
plane), they are all of order one, and their residue is Res

[
Iαβ,ab, p+

]
; cf.

Eq. (D.6). These are closed-form symbolic expressions that are possibly
very large and unusable for direct (physical) interpretation (just like
with the integration formula we just discussed). Although we have
not done so, we believe that it is possible to implement an algorithm
that preforms the residue method for any of the integrands we treat in
this work – and even for more general ones (e.g. for Tsep > 0 or mode
functions with non-polynomial numerators in frequency) thus being
more versatile than the integration formula. This point will become
clear in Sec. 9.2 (see also Sec. D.2 and Sec. E.2) where we integrate, by
hand, approximate forms of σtm with the residue technique.

9.1.3 Approximate symbolic expressions

In order to obtain concise expressions that can be interpreted, we
make some simplifying approximations in σout Eq. (9.9) before integ-
ration. For large mechanical quality factors ωj ≫ γj, the poles of the
mechanical susceptibilities χj Eq. (5.23d) are well approximated by

ω±
j =

1
2

(
±
√

4ω2
j − γ

2
j − iγj

)
≈ ±ωj − iγj/2 (9.18a)
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for j = 1, 2. We thus approximate

χj(ω) ≈ 1
ω−ω−

j

−
1

ω−ω+
j

. (9.18b)

This approximation leaves out terms with scaling O
(
Q−2

jj

)
. We ap-

proximate
∣∣χj∣∣2 as

∣∣χj(ω)
∣∣2 ≈

∣∣∣∣∣ 1
ω−ω−

j

−
1

ω−ω+
j

∣∣∣∣∣
2

≈
∣∣∣ω−ω−

j

∣∣∣−2
+
∣∣∣ω−ω+

j

∣∣∣−2
(9.19a)

=:
∣∣∣χ−j (ω)

∣∣∣2 + ∣∣∣χ+j (ω)
∣∣∣2. (9.19b)

The first approximation is that from Eqs. (9.18) and the second neglects
cross terms that scale like O

(
Q−2

jj

)
relative to the ones we keep, close

to the resonances ±ωj of χj(ω) where they are peaked. Mechanical
oscillators with large Qjj efficiently enhance terms at frequencies in a
narrow band around the mechanical resonance, which is the physical
origin of the approximations here.

The modulus of the optical susceptibility χopt(ω) Eq. (5.23e) is
largest at ω = 0 where it is 1/

√
κ. Close to ±ωj, where the other

terms in σout are enhanced by |χj(ω)|2, the optical susceptibility is
≈ 1/

√
κ in the sideband unresolved regime κ ≫ ωj Eq. (8.4). At

higher frequencies, it becomes smaller, and so do the mechanical sus-
ceptibilities. Therefore, it is in the region near ±ωj that the σout has its
largest contributions as integrand in Eq. (9.11). We thus approximate
the optical susceptibility with

χopt(ω) ≈ 1√
κ

. (9.20)

The functions S, C, R, I and X in σout Eqs. (9.13) are approximated as

S(ω) =
1
2

(9.21a)

C(ω) ≈
∑
j

Γ ro
j Γ

tot
j

∣∣χj(ω)
∣∣2 (9.21b)

R(ω) ≈ i
∑
j

Γ ro
j

(ω2
j −ω

2)

2ωj

∣∣χj(ω)
∣∣2 (9.21c)

I(ω) ≈
∑
j

Γ ro
j

γjω

2ωj

∣∣χj(ω)
∣∣2 (9.21d)

X(ω) ≈ Γ ro
1 Γ

ro
2 Re[χ1(ω)χ∗2(ω)]

=
Γ ro

1 Γ
ro
2

2ω1ω2
[(ω2 −ω2

1)(ω
2 −ω2

2) + γ1γ2ω
2]

× |χ1(ω)|2|χ2(ω)|2.

(9.21e)
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where we use the rates from Eqs. (5.24) characterising the optomech-
anical dynamics: Γ ro

1 := 4g2/κ, Γ th
1 := γ1n1, and Γ tot

1 := Γ ro + Γ th.

In App. D, we show that the thus approximated integrals converge.
Polynomials in the denominator of the integrands are always suitable
for integration with the residue method discussed above. The poles of∣∣∣χ±j ∣∣∣2 =

1
(ω−ω±

j )(ω−ω±
j

∗
)

are {ω±
j ,ω

±
j

∗
}, all of order one, appearing in all four quadrants of

the complex plane. Note how we wrote the denominator as (ω−

ω±
j )(ω −ω±

j

∗
) and not |ω −ω±

j |
2; this is to avoid mistakes when

promoting ω to the complexes when using the residue integration
technique. In Eq. (9.11), the mode functions contribute two poles of
order one; they are either in the same complex half-plane or one on
each side. Due to the symmetry ωE = −ωL [cf. Eqs. (8.10a)], when
both poles are in the same complex half-plane, they form a pole of
order two. Given a distribution of the poles in the complex plane, a
clever choice of integration contour can reduce the number of poles to
evaluate (and avoid the increased complexity of poles of order two).
The choice of integration contour depends on the numerator of the
integrand. In the cases encountered in this derivation, the best choice
is always the contour along the real line with a closing half-circle in the
upper complex plane, and no poles of order two need to be computed;
see App. D.2 and [Gut24, Theoretical predictions derivation .nb] 7 for
details.

9.2 approximate formula for epr-variance

In the previous section, we explained how to compute the exact and
approximated symbolic expression for the state σtm of the temporal
modes of measurable light. In principle, any entanglement test can
be applied to σtm, in particular, entanglement measures that are most
informative. Here we focus on the EPR-variance (∆EPR): a particular,
sub-optimal, entanglement witness based on second moments intro-
duced in Sec. 3.4.1. The goal is to obtain concise expressions that can
be interpreted physically in order to understand how entanglement
is being detected in this protocol. It is the mathematical simplicity
of ∆EPR (compared to the logarithmic negativity, for example) that
dictates its choice here.

7. File path: see footnote 1.
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The EPR-variance was defined in Eq. (3.13) in the quadrature rep-
resentation; in the ladder operator representation we get

∆EPR = 2
〈
aEa

†
E

〉
sim

+ 2
〈
aLa

†
L

〉
sim

+ 2
〈
eiϕaEaL + H.c.

〉
sim

= 2
(
σtm
EE,12 + σ

tm
LL,12 + eiϕσtm

EL,11 + e−iϕσtm
EL,22

)
(9.22)

where we used the tensor notation of Eq. (9.14). It is thus the sum of
four entries of σtm – this is what we call "mathematical simplicity".

In Appendix E.1, we demonstrate the following symmetries that
reduce the number of necessary integrations. One finds that that
σtm
EL,11 is the complex conjugate of σtm

EL,22 so that

eiϕσtm
EL,11 + e−iϕσtm

EL,22 = 2 Re
[

eiϕ
∫

dωf2
E(−ω) [−C(ω)

+R(ω) −X(ω)]

]
. (9.23)

Also, the sum

σtm
EE,12 + σ

tm
LL,12 = 1 + 2

∫
dωfE(−ω)f∗E(−ω)(C(ω) +X(ω)) (9.24)

because the I terms [cf. Eq. (9.12)] cancel out.

The factor 1 in Eq. (9.24) arises from the integration over the constant
S = 1/2 (we had called this contribution shotnoise). In the absence of
mode functions, the integral over this term in Eq. (9.11) would diverge
as a consequence of the white-noise model (with infinite energy).

Only five integrals (three in the single mechanical mode case) must
be computed to obtain ∆EPR. We introduce the following notation: the
integrands are sans-serif uppercase I’s; the integrals are uppercase I’s;
we supplement them with the tensorial notation of Eq. (9.14) □αβ,ab,
with α,β = E,L and a, b = 1, 2; and a superscript A = S,C, R, I, X that
indicates the function involved, either from the exact Eqs. (9.13) or
from the approximated Eqs. (9.21)1. This notation is best understood
with an example: from Eq. (9.24) we need to compute∫∞

−∞ dωfE(−ω)f∗E(−ω)C(ω) =: ICEE,12

=

∫∞
−∞ dω ICEE,1,2(ω).

(9.25)

The EPR-variance takes the form

∆EPR = 2 + 4 ICEE,12 + 4 IXEE,12

+ 4 Re
[
eiϕ (−ICEL,11 + I

R
EL,11 − I

X
EL,11

)]
. (9.26a)

When only one mechanical mode is modelled, it is

∆EPR = 2 + 4 ICEE,12 + 4 Re
[
eiϕ (−ICEL,11 + I

R
EL,11

)]
. (9.26b)
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These expressions are exact if one uses the exact expressions of C,
R, I, and X from Eqs. (9.13). Explicit closed-form expressions can be
obtained with the integration techniques of Sec. 9.1.2 above.

We proceed with the simpler approximate forms of C, R, I, and X
Eqs. (9.21) and compute only those entries entering the expression of
∆EPR in Eq. (9.26). We thus derive an approximate concise expression
of the EPR-variance.

In Section E.2, we explain how we performed (by hand) the integ-
ration of the five terms in Eq. (9.26) with the method of residues; see
also [Gut24, Theoretical predictions derivation .nb] 8. The result of
the integration of the approximate terms is still too cumbersome for
interpretation. We thus approximate them further with the follow-
ing procedure (performed and documented in [Gut24, Theoretical
predictions derivation .nb] 9). For each integral in Eq. (9.26):
• sum the residues of the different poles and put them in the simplest

form without approximation (e.g. using Mathematica’s function
FullSimplfy) 10;

• neglect γj against ωk, j, k = 1, 2 under the assumption that Qkj ≫
1 [cf. Eq. (5.16)] and neglect the mismatch between filter demodula-
tion and target mechanical frequency d against unity [cf. Eq. (8.8)];

• finally, take the real part of the expressions, whenever explicitly
required in Eq. (9.26).

The contributions from cross-term X can be neglected in the high-Q
limit Eq. (5.16) and assuming that the spectator mode is well outside
the filtering bandwidth ∆ω ≫ Γ [cf. Eq. (5.11)]; see Sec. E.6 for the
detailed justification.

We find the following expression for the EPR-variance

∆EPR ≈ 2 +G [E+N0 +N1 +N2] (9.27)

where the complexity is hidden in the notation. We define and explain
each term step by step in the next paragraphs.

We define

G := 4
4Γ ro

1 Γ
tot
1

(2Γ + γ1)2 (9.28)

which is a positive quantity. The EPR-variance detects entanglement
when ∆EPR < 2, which only happens when the term in the square
bracket is negative. In this sense, G scales the amplitude of the
separability violation. We will argue below that the only term that
contributes significantly to entanglement detection is E, while the
N-terms are typically detrimental.

8. File path: see footnote 1.
9. File path: see footnote 1.

10. Simplifying the sum of residues of a single integral has the virtue of keeping
terms real before further approximations.
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In the limit of no interactions when gj = 0, then Γ ro
j = 0 and

∆EPR = 2. 11 We can trace back the factor of 2 [1st term in Eq. (9.27)]
to the shotnoise contribution in the output field, i.e. the term related
to S in Eqs. (5.23), and to S in Eq. (9.12). It is the noise of the cavity
environment – the inherent (quantum) fluctuations in the detection
channel. From the quantum measurement perspective, this is the
fundamental quantum sensing-noise of the probe itself.

We rescale the temporal filter bandwidth Γ by the mechanical fre-
quency of the target mode

ν :=
Γ

ω1
. (9.29)

On the one hand, we expect that the temporal modes must be shorter
than the mechanical loss of coherence due to the influence of the
thermal bath: here, the thermal noise rate is Γ th = γ1n1 ≫ γ1 in
the high bath temperature limit Eq. (8.2). Hence, it is physically
meaningful to restrict the analysis to bandwidths significantly larger
than the mechanical decay rate Γ ≫ γ1. On the other hand, based on
our physical (but somewhat heuristic) understanding of the role of the
temporal modes as "filters extracting the relevant information from
the output field", we expect that the amplitude of temporal modes
should not decay faster than a mechanical oscillation. If Γ > ω1, the
demodulation is effectively suppressed and it is not clear how (and
what) information is retrieved from a partial oscillation; see depiction
of the mode functions in Fig. 8.1. Hence, it is also physically sensible
to restrict ourselves to Γ < ω1. In terms of the newly defined ν, these
limitations mean that

1 > ν≫ 1
Q11

. (9.30)

We go further and assume Γ 2 ≪ ω2
1, so that the mode functions

demodulate several mechanical oscillations. 12 This implies ν2 ≪ 1.
The reason for pushing the left bound of Eq. (9.30) to that limit is
because it allows to obtain the clearest mathematical and physical
expressions for ∆EPR below. Relaxing these limitations on Γ makes the
study of Eq. (9.27) (and in fact all other expressions derived below)
harder and less insightful.

11. We will see below that if g1 = 0 and g2 ̸= 0, then Γ ro
1 in G cancels with 1/Γ ro

1
from N2 and there is a finite contribution from the latter (associated to the spectator
mode).

12. This is a technicality and it is the ordering of the squares that is formally needed
for the approximations we make below; which is less demanding than assuming
Γ ≪ ω1.
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We define the following functions:

E := A−
Γ

Γ tot
1
N0 (9.31)

A :=
4 + 2ν2

4 + 4d2

ν2 + ν2
(9.32)

N0 :=
[
ν2 − d2

ν2 + d2 cos(ϕ) −
2dν
ν2 + d2 sin(ϕ)

]
e−γ1Tsep/2. (9.33)

Recall that d and δω, defined in Eq. (8.8), quantify imperfect tuning of
fE and fL. We assumed that each sideband is still inside the Lorentzian
mode filter, which means d < ν. For real numbers a, b, we have 13

a2 + b2 > 2ab, and (a2 − b2) cos(x)± 2ab sin(x) ⩽ a2 + b2. Also, if
ν2 > 2d > 0, then we have the following important restrictions 14

1 < A < 2 (9.34a)

|N0| ⩽ 1. (9.34b)

Taking for granted (for now) that E is the only term that can become
significantly negative, these restrictions lead to the important necessary
condition to detect entanglement

Γ > Γ tot
1 ⇐= ent. (9.35)

It will come up repeatedly in the following. In the high bath oc-
cupation limit Eq. (5.17), we have Γ tot

j ≫ γk, for j, k = 1, 2, so that
Γ ≫ γk is necessary for entanglement – compatible with Eq. (9.30). In
terms of the factor G Eq. (9.28), this implies that G < 4(1 − Γ th

1 /Γ
tot
1 ) =

4 [1 − 1/(C1 + 1)].

Related to A and N0 we define

N0 :=
2Γ
γ1

(A−N0). (9.36)

Because of the limits in Eqs. (9.34), this term can never be negative 15

so that it is always detrimental to the detection of entanglement in
Eq. (9.27). Moreover, we just saw that Eq. (9.35) implies Γ/γ1 ≫ 1; in
the following, this will be the reason to choose the free parameters
that minimise A−N0 in priority, i.e. before optimising any other term.

13. We used Mathematica to check and do not have a proof ourselves. . .
14. This is again a technicality. It is compatible but more restrictive than ν > d

above. Allowing d→ ν (from below) can make A < 1 which makes the argumentation
later more complex.

15. If we had used ν > d instead of ν2 > 2d above, then A can become less than 1
and N0 is not detrimental. We did not study that regime.
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We defined

N1 :=
Γ 3

2γ1ω
2
1

(
1 +

γ1

2Γ tot
1

)
N1 (9.37)

N1 :=
[

4 − ν2

4 + ν2 cos
(
ϕ+ 2Tsepω1

)
+

4ν
4 + ν2 sin

(
ϕ+ 2Tsepω1

)]
e−γ1Tsep/2

(9.38)

and just like N0, we have |N1| < 1. N1 can become negative so that N1

can contribute positively to the detection of entanglement. We could
not prove that it can make Eq. (9.27) less than 2 without negative E,
nor could we exclude it in general. Its prefactor ∝ ν2Γ/γ1 is less than
that of N0 by a factor ν2 ≪ 1, so its contribution is typically much less;
therefore, we prioritise the optimisation of N0 over that of N1 in the
following.

Finally, we defined

N2 :=
Γ 3

2γ1ω
2
1

4ω2
1

Γ 2 +∆ω2W
2
[

1 +
γ2

2Γ
+

(
1 +

γ2

2Γ tot
2

)
N2

]
(9.39)

N2 :=
[
D2 − ν2

D2 + ν2 cos
(
ϕ− Tsep∆ω

)
−

2Dν
D2 + ν2 sin

(
ϕ− Tsep∆ω

)]
e−iTsepγ2/2

(9.40)

W2 :=
g2

2

g2
1

n2

n1

C2 + 1
C1 + 1

=
γ1

γ2

Γ ro
2
Γ ro

1

Γ tot
2
Γ tot

1
. (9.41)

This contribution is due to the spectator mode – indeed, if g2 = 0 it
vanishes. 16 D and ∆ω defined the frequency of the spectator mech-
anical mode relative to the target mode Eq. (5.11). The integrals that
deliver these terms are the same as those providing the contribution
due to imperfect tuning of the filters – with D playing the role of d
and ∆ω the role of δω. However, in the approximate expression of
Eq. (9.27) they contribute differently: we assumed δω < Γ with |d| ≪ 1
and ∆ω > Γ with |D| < 1 so that we cannot neglect D against unity,
contrary to d. This translates the idea that the imperfect filtering still
performs approximately as expected and the sidebands fall within the
filter bandwidths. On the other hand, we expect that additional mech-
anical modes are detrimental, and one chooses mechanical systems
where the second mode is well outside the filters so as to minimise their
effect. Like N0 and N1 we have |N2| < 1. We used the cooperativities
of both modes Cj = Γ

ro
j /Γ

th
j Eq. (5.24c) in the dimensionless term W.

In the regime we have in mind, where the occupations of the mechan-
ical baths are similar n1 ≈ n2 [cf. Eq. (5.17)] and where g1 > g2, then
W < 1. In the limit where the second mechanical mode interacts very

16. The limit g1 → 0 is well defined becauseW comes as a product with G Eq. (9.28)
that has a g2

1 in Γ ro
1 at the numerator.
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Fig. 9.1 For a single mech-
anical mode, the exactly in-
tegrated ∆EPR is the con-
tinuous yellow line; the
dashed red curve is ∆EPR
from the approximated for-
mula Eq. (9.27). The para-
meters are those of Tab. 9.1.
The dot-dashed blue curve
provides the relative accur-
acy of both (right ordinate).
The abscissa is the temporal
mode filter bandwidth Γ .
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little with the light compared to the target mode g2
1 ≫ g2

2, then W ≪ 1
and the contribution from N2 is reduced accordingly. In the regime
Γ > Γ tot

1 – expected for entanglement Eq. (9.35) – and Γ tot
1 > Γ tot

2 (when
g1 > g2), then N2 can become negative when N2 approaches -1: in that
limit we get N2 = γ2

2Γ

(
1 − Γ

Γ tot
2

)
, a form similar to E above. As for N1,

we could not prove that this term can yield entanglement detection
without E < 0, nor could we exclude it.

9.3 accuracy of approximate formula

The approximate formula of Eq. (9.27) above is the starting point
for the coming analytical analysis of how our scheme detects entan-
glement. We assess its accuracy compared to the exact result based on
the state σtm integrated exactly as described in Sec. 9.1.2. The set of
parameters for the comparison presented here are given in Tab. 9.1.
They are realistic and not particularly optimistic. 17 They are the basis
for all numerical studies in this Chapter 9: in the following we make
relatively small changes of certain parameters to explore and illustrate
interesting features.

Figure 9.1 shows the approximate formula from Eq. (9.27) (dashed
red) for a single mechanical mode (i.e. with g2 = 0) against the exact
∆EPR (continuous yellow). The blue dash-dotted line gives the relative
accuracy of the approximated formula (right ordinate). The worst
agreement with 6 percent error is far from the entangled regime; in

17. In terms of experimental resource, sub-kelvin temperature probably makes
the scenario more demanding because it is lower than liquid helium requiring more
sophisticated cryogenic techniques.
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Physical property Symbol Value Units

mech. frequencies ω1 106 × 2π [rad Hz]

ω2 (1 + 0.05)ω1 [rad Hz]

drive detuning ∆ 0 [rad Hz]

cavity linewidth (FWHM) κ 10ω1 [rad Hz]

optomech. couplings g1 16.5 × 103 × 2π [rad Hz]

g2 g1/5 [rad Hz]

mech. linewidths (FWHM) γ1 0.01 × 2π [rad Hz]

γ2 ≈ 10γ1 [rad Hz]

mech. quality factors Q1 108 []

Q2 Q1/10 []

mech. baths temp. T1 0.5 [K]

T2 T1 [K]

baths’ occupation numbers n1 104 []

n2 ≈ n1 []

Table 9.1 Parameters inspired by experiments where the mechanical oscillators
is a drum mode of a thin membrane, as described in Sec. 10.1 and App. G.1,
see also [Che+20; Ros+19; Tsa+17; MN17]. The cooperativity of the target
mode is slightly above 1 C1 ≈ 1, and that of the spectator is much less than 1
C2 ≈ 4× 10−3. These parameters for the target modes were used in or publication
[Gut+20].
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Figure 9.2 Approximate vs exact ∆EPR for different cavity linewidth κ leading to
different accuracy: light colours are for the accurate largely unresolved sidebands
and dark colours are for the less accurate one. Yellow continuous lines are the
exact calculations and dashed red are the approximated results. The relative
differences are the blue dash-dotted lines referring to the left ordinate axis. x-axis
is the filter function’s bandwidth.

the entangled regime, the agreement is better than a percent. This is
evidence that the approximation is correct.

As far as we call tell, it is the approximation that relies on the
unresolved sideband regime Eq. (8.4) that is the most inaccurate in
this parameter regime. In Figure 9.2 we show how the accuracy
changes depending on the sideband resolution. In light colours, κ
is three times larger than in Tab. 9.1 and the curves overlap very
well with a relative difference below a percent. In dark colours, κ
half its value from Tab. 9.1 and the discrepancy between exact and
approximate curves is visible.

Figure 9.3 shows the results accounting for a spectator mode (i.e.
with g2 as in Tab. 9.1). The agreement between exact and approximate
EPR-variance is better than a few percent. This is evidence that our
calculations are correct also in this more involved case.

We systematically varied all parameters from 0.1 to 10 times their
values in Tab. 9.1 (picking 20 different values in that interval). Only
ω1 was kept the same, while the bandwidth Γ was swept from 1 to
106 rad Hz (60 values). We find that the relative difference between the
exact and the approximate EPR-variance, where it detects entangle-
ment, is between +6% and −33%. This means that, tendentiously, the
approximated formula Eq. (9.27) underestimates the correct value of
∆EPR – this is a possible non-conservative bias to be aware of. We also
compared the predictions on the largest separability violation (i.e. we
find the minimal ∆EPR with respect to the temporal mode bandwidth
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Fig. 9.3 Approximate
(dashed red) vs exact
(continuous yellow) ∆EPR
including a spectator mode
5% away from the target
mode; cf. Tab. 9.1. Blue
dot-dashed curve gives the
relative accuracy (right
ordinate).

Γ for each configuration) and found that the relative error is between
3% and −21%. These results were computed with Python and are
available in the Zenodo repository [Gut24]. 18

The spectator mode scenario is numerically more demanding, so we
performed the same broad parameter sweep but with only 5 different
points per parameter range (except Γ ). We found that, in the region
where entanglement is detected, the approximate formula deviates by
5% up to −41% from the exact results; in terms of largest separability
violation, the accuracy is between 3 and −41%.

9.4 limit scenarios

An explicit and relatively concise formula describing the functional
role of the parameters in detecting entanglement is a powerful oppor-
tunity to understand and optimise the protocol efficiently. Although
Equation (9.27) is much more concise than the exact symbolic expres-
sion, 19 it remains quite bulky and hard to interpret at once. Our
strategy for understanding the various parts is to look at relevant

18. The evaluation of the symbolic formula with numerical parameters is efficient
and our barely optimised code produced the evaluation of the exact EPR-variance for
this large sweep in less than 5 minutes on my personal computer.

19. Seen as a string – where the variables are omega1, gamma2, etc. – the exact
symbolic expression of σtm has a little more than 132 million characters. Tolkien’s
trilogy The Lord of the Rings has approximately 480 × 103 words according to this
website. Assuming an average of five characters per word [BSS15] and adding one
more character for the white spaces, the three books contain a little less than 3
millions symbols, which is 44 times less than our exact expression. It is probably
more appropriate to compare this opaque formula to some comparably opaque texts:
I found that the Swiss penal code [RS 311.0 le code pénal (CP)] has a little less than
half a million characters, that is less than half a percent of the exact expression of the
covariance matrix. Meta/Facebook’s privacy policy has about 170 × 103 characters

http://lotrproject.com/statistics/books/wordscount
http://lotrproject.com/statistics/books/wordscount
https://www.fedlex.admin.ch/eli/cc/54/757_781_799/fr
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limits. The free parameters that are not set by the experimental setup
are d (or ω̄), ν (or Γ ), ϕ, and Tsep. We saw that the first two are small –
or we expect them to be small – while the last two are more or less free
– but we also expect them to be small relative to their typical scale. In
a first analysis, we restrict ourselves to the case of a single mechanical
mode to better isolate the role of the spectator mode: that is, we set g2

to zero so that N2 = 0 in Eq. (9.27). The global strategy is to start with
tuned filters δω = 0 and look first at the limit ν→ 0. Then, we study
the regime 1 ≫ ν2 > 0. Subsequently, we optimise ϕ and Tsep. We will
establish that, in the limit of finite Tsep ≳ 1/κ > 0, entanglement can
still be retrieved, which is crucial for the consistency and soundness
of our argument; see discussion in Sec. 7.2 about the strict pairwise
interaction requirement of the entanglement verification theorem and
the delay induced by the cavity. Then we allow for imperfect tuning
of the mode function δω ̸= 0, which is important in practice, as the
mechanical frequency is not known perfectly and is subject to possible
drifts during a measurement run. Lastly, we explore the spectator
mode scenario with finite g2.

9.4.1 Limit of narrow filter bandwidths: Γ 2/ω2
1 → 0

In the limit where ν2 is so small that it can entirely be neglected, we
get

∆EPR ≈ 2 +G

[(
1 −

Γ

Γ tot
1
N0

)
+

2Γ
γ1

(1 −N0)

]
(9.42)

with

N0(d = 0) = cos(ϕ) e−γ1Tsep/2. (9.43)

It is the expression that we had derived in our published work present-
ing the protocol [Gut+20]. This expression is minimised when N0 = 1,
which happens when Tsep = ϕ = 0.

The filter bandwidth that minimises Eq. (9.42) is

Γopt = 2 Γ tot
1 + γ1/2 ≈ 2 Γ tot

1 (9.44)

where the approximation holds when n1 ≫ 1. Γ is the (inverse)
duration of each temporal mode and the relevant temporal scale is the
duration of both pulses 2/Γopt, hence the factor of 2 in Eq. (9.44). Γ tot

1
is the sum of the coherent "readout" rate Γ ro

1 – which relates to the rate
at which entangled light exits the cavity – and the (thermal) noise rate
Γ th

1 that sets the time scale at which coherence of mechanical motion
is lost. This expression states that one should verify the presence of
entanglement:

[estimate obtained from the printable version of the privacy policy at that url on
2024-05-01], which is one per mil.

https://mbasic.facebook.com/privacy/policy/printable/
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• faster than the decoherence rate
and
• as fast as the readout rate allows.

The former sets the minimal necessary requirement to observe en-
tanglement: Γ > Γ th. And the latter is an optimisation measure that
minimises the probability of decoherence. The existence of an op-
timum implies that being "too fast" becomes detrimental. Intuitively, if
the pulses are faster than the dynamics generating entanglement, then
less entanglement can be retrieved. In the limit of very short temporal
modes, Γ becomes large and ν2 cannot be neglected, so that Eqs. (9.42)
and (9.44) become inaccurate.

We replace the optimal bandwidth in Eq. (9.42), and obtain the
optimal violation of the EPR-variance (in the limit ϕ = Tsep = 0 and
when ν2 can be neglected)

∆
opt
EPR = 2

(2Γ tot
1 − Γ ro

1 + γ1)

2Γ tot
1 + γ1

≈ 1 +
1

C1 + 1
(9.45)

where we ignored terms of order 1 against n1, and C1 = Γ ro
1 /Γ

th
1 is

the cooperativity Eq. (5.24c). The limits C1 → 0 and C1 → ∞ in
Eq. (9.45) are remarkable and we study them in Fig. 9.4. For any
(however small) finite cooperativity C1 > 0, this formula predicts
∆

opt
EPR < 2, so that the scheme seemingly always detects entanglement –

for any parameters compatible with the limits we consider here. To
interpret this point correctly, it is important to remind ourselves that
Γ tot

1 < Γ must necessarily hold for entanglement and that Γ 2 ≪ ω2
1

must hold as well so that ν2 can be neglected: these two conditions
are in opposition limiting rather strictly their span of common validity
(we will see the details of this process with the sufficient condition for
entanglement Eqs. (9.46) later on).

In the left panel of Fig. 9.4 we show how the particularly concise
expression of Eq. (9.45) (continuous red line) compares to the exact
results (yellow circles): the parameters are those of Tab. 9.1 where
C1 ≈ 1, then we vary g1 to sweep various cooperativity regimes. We
see good agreement for moderate cooperativities – in particular, it
confirms the unexpected feature of detectable entanglement at low
cooperativity. As g1 increases, Γ tot

1 increases and so does the temporal
mode bandwidth (in order to maintain the necessary condition Γ tot

1 <

Γ ) up to the point where neglecting ν2 becomes inaccurate: this is
when the circles depart from the continuous line. The exact ∆EPR

values eventually become larger than 2 for C1 > 10 and the scheme
does not detect entanglement in this regime. It is well understood
in terms of the sufficient condition Eqs. (9.46) presented below. It
remains astonishing that larger cooperativity leads to undetected
entanglement. Given exact covariance matrices σtm, we compute their
optimal witness introduced in Sec. 3.4.2: they are the blue dots in the
figure. The separability bound of the optimal witness is rescaled to 2 so
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Figure 9.4 (left) Minimal value of ∆EPR over the filter bandwidth Γ as a function of
cooperativity via coupling to the target mode g1. Solid red line is the approximated
∆

opt
EPR Eq. (9.45), yellow circles are the result from the exact integration, and the

blue dots are the optimal witness values for the exactly integrated σtm (with same
separability bound as ∆EPR). (right) Same but with the cooperativity changed via
the mechanical bath occupation n1 (that increases to the left). These plots are
adapted reproductions of those in [Gut+20].

that it can be plotted on the same y axis as ∆EPR. The optimal witness
is a necessary and sufficient test and shows a monotonically increasing
separability violation with increasing C1, as intuition dictates. This
means that it is the choice of the EPR-variance as entanglement test
that prevents the detection of entanglement at large values of g1.
Interestingly, the approximate formula for the optimal ∆EPR (red line)
and the optimal witness agree well with each other: we have no
explanation for this fact and experience showed that it is the case as
well in other parameter regimes.

From the base parameters of Tab. 9.1, one can reach the high cooper-
ativity limit, while satisfying Γ tot

1 < Γ and Γ 2 ≪ ω2
1, by decreasing n1

but remaining in the regime n1 ≫ 1. In Figure 9.4 (right panel), g1 is
that of Tab. 9.1 so that C1 ≈ 1 for n1 = 104. In the large cooperativity
regime, the concise formula of Eq. (9.45) (red line) agrees well with
the exact ∆EPR (yellow circles): there, Γopt decreases with n1 so that
ν2 becomes smaller and smaller. When n1 increases, the circles first
depart from the solid line when ν2 cannot be neglected anymore, and
then they stop revealing entanglement when the sufficient condition
Eqs. (9.46) (below) stops being satisfied, just as in the left panel. The
optimal witnesses computed from the exact states again match well
the formula Eq. (9.45): in particular, it saturates at 1, which is half of
the (mathematically) possible separability violation. This limitation
is unexpected, and because it seems to be a limit for the optimised
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Fig. 9.5 EPR-variance
against Γ for different
cooperativities: C1 = 0.1
(red), 1 (yellow), and 12
(blue). The solid lines
are from the approximate
formula Eq. (9.42), the
circles are from the exact
calculation, and the dots
are the optimal witness
values computed from
the exact σtm (with the
same separability bound
as ∆EPR). This is an
adapted reproduction from
[Gut+20].

witness as well, it is not due to the choice of entanglement test. 20

Hence, it seems that "half the available entanglement" (in the large
cooperativity limit) is not encoded in the temporal modes we look at.
We do not have an explanation for this fact. In Ref. [MDC10], where
they study optomechanical entanglement between the oscillator and
an optimised temporal mode of the light (which is the same as our
early mode), they find no limit on the amount of entanglement; i.e.
their expression for the logarithmic negativity is not bounded. This
prompts us to think that it is the late mode that does not retrieve
all the correlations (after all, the beam splitter interaction might not
swap the whole mechanical state exactly). It would be interesting to
investigate if another late filtering mode can do better.

The behaviour of Eq. (9.42) for different cooperativities is shown
in Fig. 9.5; the parameters are those of Tab. 9.1, where g1 is chosen
to set the cooperativities indicated in the legend. We see in more
detail how well (or not) the rough approximations leading to Eq. (9.42)
(solid lines) compare to the exact ∆EPR (circles). The discrepancies
occur consistently with the understanding developed in the previous
paragraphs. Here again, the approximated formula and the optimal
witness overlap quite well.

9.4.2 Limit of finite filter bandwidth: Γ 2/ω2
1 > 0

In the limit of ν small but finite 1 ≫ ν2 > 0 Eq. (9.30), it is still
best to set N0 = 1 with ϕ = 0 and Tsep → 0. Details are presented
in App. E.3 and in [Gut24, Theoretical predictions derivation .nb] 21.

20. The logarithmic negativity that measures entanglement also saturates to a finite
value in this limit.

21. File path: see footnote 1.
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We find the following necessary and sufficient condition for detecting
entanglement (with the EPR-variance, in the presence of a single
mechanical mode)

Γ tot
1 < Γ <

2
3

ω1
3
√

2Q11
. (9.46a)

The first inequality corresponds to the necessary condition Eq. (9.35)
and we refer to the second inequality as the sufficient condition. In
the limit of large mechanical quality factors the sufficient condition is
compatible with ν2 ≪ 1, which we used to derive this result. Remark-
ably, it relates Γ tot

1 to the mechanical frequency in a way that forms a
stringent constraint on the bath temperature 22

n3
1(C1 + 1)3 < (3n1(C1 + 1))3 < (2Q11)

2. (9.46b)

We also give the explicit dependence of the different parameters
independently

4g2
1

κ 3
√
γ1

+n1γ
2/3
1 <

(2ω1)
2/3

3
. (9.46c)

This sufficient condition for entanglement is essentially the same
as Eq. (25) in our published work [Gut+20]. This regime is rather
unexpected: given a high mechanical bath occupation and a large
quality factor, the cooperativity C1 should not be too large in order to
detect entanglement. Importantly, Eqs. (9.46) is not a statement about
the amplitude of the violation of the separability bound, hence we
expect that small cooperativity will lead to rather small violations of
the bound reflecting weak correlations; as illustrated in Fig. 9.4 and
Eq. (9.45). Small violations in turn make an experimental realisation
more challenging because it leaves less room for uncertainties and
error bars.

We test this sufficient condition for entanglement in Fig. 9.6. Starting
from the parameters in Tab. 9.1, we reduce the mechanical frequency
by a factor 7 and, accordingly, increase n1 by the same factor (thus
keeping the bath temperature constant), we also keep Q11 constant
so that the cooperativity remains approximately 1. In that regime,
the sufficient condition Eqs. (9.46) is not met and entanglement is
not detected in Fig. 9.6 (left). At unit cooperativity, the coherent
contribution Γ ro

1 in Γ tot
1 and the incoherent contribution Γ th

1 contribute
equally. Hence, one can attempt to restore the sufficient condition
by reducing either of these rates. Because it is counter-intuitive (and
experimentally easier), we decrease the optomechanical coupling g1 by
a factor 2 (thus dividing the cooperativity by 4). The result is shown
in the right panel of Fig. 9.6 where entanglement is detected again,
but the separability bound violation is small, reflecting the decreased

22. We often use that Γ tot
j = γjnj(Cj + 1).
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Figure 9.6 EPR-variance from exact σtm as continuous yellow lines, from the
approximated formula Eq. (9.27) as dashed red, and their relative difference in
dot-dashed blue. (left) The mechanical frequency from parameters from Tab. 9.1
is reduced (at fixed C1 and Q11) so that the sufficient condition Eqs. (9.46) is
not satisfied. (right) Optomechanical coupling g1 is decreased by half so that the
sufficient condition is satisfied and entanglement is detected again.

cooperativity. Both plots in Fig. 9.6 show exact and approximated
results, and their relative accuracy is better than the percent level (in
the region where ∆EPR is smallest).

The results from the optimised witnesses in Figs. 9.4 show that the
limitation set by the sufficient condition Eqs. (9.46) is being overcome
by a better entanglement test – hence the limitation set by this sufficient
condition is not fundamental. In fact, in our experience, necessary
and sufficient entanglement tests always detect entanglement when
only a single mechanical mode is included. This is an illustration of
the universality of optomechanical entanglement, as demonstrated in
[MDC10] and extended in [Dir+24]. In practice, this led to the situation
where the theoretical model was not very helpful in understanding
why the analysis of experimental data would not succeed.

Experience also shows that the entangled states detected by ne-
cessary and sufficient tests typically require large Γ (typically > ω1)
consistent with [MDC10]. This is also consistent with the intuition
that on time scales shorter than the incoherent noise channel rate Γ th

1 ,
the temporal modes necessarily encode (some) quantum correlations.
But short temporal modes are broad frequency filters that are limited
in practice by other (incoherent) processes in the associate bandwidth;
see Part iii where we discuss real experimental setups.

We also point out a result from [Bar+11] showing that states detected
by EPR-variance-like criteria are robust against passive losses. This is
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Fig. 9.7 Contour plot of ex-
act ∆EPR < 2 (the darker
the smaller) for varying Γ

and ϕ. The dashed line is
the accuracy condition on ϕ
Eq. (9.47b). All axis’ scales
are logarithmic.
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an argument for targeting the parameter space characterised by our
sufficient condition Eqs. (9.46) – and still using a more powerful test
in paractice.

9.4.3 Limit of finite ϕ and Tsep

Remaining in the limit ν2 ≪ 1 with the perfectly tuned filters
(δω = 0), we now discuss how the approximate formula for ∆EPR

Eq. (9.27) changes when ϕ and Tsep are finite – the latter is of crucial
importance for cavity optomechanical devices where we saw that
Tsep must be > 1/κ for the entanglement verification theorem to hold
in good approximation; cf. Sec. 7.2. The case ϕ ̸= 0 simulates, for
example, the effect of imprecision in the optimised witness matrix; we
did not study this point, but it could be a starting point to describe
statistical effects of the state reconstruction in the computation of the
optimal witness; see also Sec. H.9 on the estimation of confidence
intervals. In the present case, the witness matrix WEPR defining ∆EPR

is set in advance and there is no uncertainty on ϕ.

In the broad cavity regime ω−1
1 ≫ Tsep ≳ κ−1 [cf. Eq. (8.4)], when

ν < 1, and when the necessary and the sufficient conditions for
entanglement Eqs. (9.46) are met, one finds the following approximate
sufficient conditions for entanglement detection (details in Sec. E.4)

0 ⩽ Tsep <
1
Γ tot

1
(9.47a)

|ϕ| <

√
γ1

Γ tot
1

. (9.47b)

In Figure 9.7, we see that entanglement is no longer detected when

ϕ is greater than
√
γ1/Γ

tot
1 ≈ 7 × 10−3 rad (for the parameters of



9.4 limit scenarios 103

103 104 105

Γ [rad Hz]

10−6

10−5

10−4

10−3

T
se

p
[s
]

1/ tot
1

103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×10−6

/(2 1)

1.48

1.53

1.59

1.64

1.69

1.75

1.80

1.86

1.91

1.96

∆
E

P
R

Figure 9.8 (left) Contour plot of the exact ∆EPR < 2 for varying Γ and Tsep. The
dashed line is the accuracy condition on Tsep Eq. (9.47a). (right) A zoom along
the y-axis. The dashed line is the optimised value for Tsep that minimises N1.

Tab. 9.1). And in Fig. 9.8 (left), we see that entanglement is no longer
detected when 2π Tsep is larger than 2π/Γ tot

1 ≈ 7× 10−4 s. This is much
longer than 2π/κ = 10−7 s, which leaves an ample margin to choose
a finite separation between the temporal modes – so as to satisfy the
strict pairwise interaction required to use the verification theorem –
and still detect entanglement between the temporal modes.

We see features towards larger filter bandwidths in the left panel
of Fig. 9.8. A zoom (right panel) reveals a regular structure, where
the domain of entanglement detection is periodically extended by an
order of magnitude (albeit with small separability violations). This
improved entanglement sensitivity happens when N1 Eq. (9.38) be-
comes negative. In Section E.4, we expand N1 close to its minimum
attempting to keep N0 Eq. (9.33) close to its maximum. The smal-
lest values for ∆EPR are then with ϕ = 0 and Tsep = π(2n+ 1)/(2ω1)

with n ∈ N. In that case, the sufficient condition for entanglement
is n1 (C1 + 1) < 2Q2

1 Eq. (E.21), which is much less stringent than
Eq. (9.47a), and Γ tot

1
2
< Γ 2 ≪ ω2

1 must hold too, reflecting the neces-
sary condition for entanglement Eq. (9.35) and the assumption ν2 ≪ 1
used to derive the results.

We illustrate this effect in Fig. 9.9 where we use the same parameter
regime as for Fig. 9.6 (ω1 7 times smaller, n1 7 times smaller, C1 ≈ 1
and Q11 = 108). As we had seen in Fig. 9.6 (left), no entanglement
is detected at Tsep = 0. As Tsep increases, entanglement becomes
periodically detectable, corresponding to the relaxation of the sufficient
condition. The first occurrence occurs at Tsep = π/(2ω1) ≈ 1.75 µs.
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Fig. 9.9 As Fig. 9.8, contour
plot of the exact ∆EPR < 2
of varying Γ and Tsep. The
parameters are as in the left
panel of Fig. 9.6 and no en-
tanglement is detected when
Tsep = 0; then periodic de-
tection for Tsep = π(2n +

1)/(2ω1), n ∈ N.
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See also quantitative expressions and qualitative discussions on the
required precision on Tsep to see this effect in Sec. E.4

9.4.4 Limit of imperfectly tuned temporal filters: |δω| > 0

We motivated our protocol arguing that it is, in principle, agnostic
of the system parameters. This statement is true at the abstract level
of the entanglement verification theorem of Ch. 7 to infer optomech-
anical entanglement from unspecified temporal modes. We went on
specifying a particular protocol implementation in Ch. 8: in particular,
we chose a specific functional form of the temporal modes involving
demodulations of the sidebands of the detectable cavity output light;
cf. Eqs. (8.7). That particular choice requires knowing the frequency
of the targeted mechanical mode ω1, which is possible up to some
finite accuracy, limited by finite statistics or because ω1 varies in the
course of a measurement run due to uncontrolled and/or unknown
processes.

We study here the expression of ∆EPR from Eq. (9.27) for 1 ≫ |d| >

0, which defined the demodulation mismatch between ω̄ and ω1

Eq. (8.8). We also assume that the mismatch is much less than the
filter bandwidth, so that Γ ≫ δω ⇒ ν≫ d. 23 In Section E.5 and in
[Gut24, Theoretical predictions derivation .nb] 24 we derive a sufficient
condition Eqs. (E.23) on the temporal mode detuning for detecting
entanglement

δω <
Γ√

n1(C1 + 1)
=⇒ δω <

√
γ1Γ

tot
1

2
(9.48)

23. Compatible with ν2 > 2d assumed to obtain Eqs. (9.34).
24. File path: see footnote 1.
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Fig. 9.10 Contour plot of
the exact ∆EPR < 2 for vary-
ing Γ and filter detuning δω.
The dashed line is the bound
Eq. (9.48) on the filter mis-
tuning δω combined with
the necessary condition on
Γ to detect entanglement.

where we used the necessary condition Γ tot
1 < Γ to obtain the implied

stricter condition.

Figure 9.10 illustrates how entanglement is lost as accuracy on the
demodulation frequency decreases. With the parameters of Tab. 9.1√
γ1Γ

tot
1 /2 ≈ 5 rad Hz, meaning that the mechanical resonance must

be known (or stabilised) at the level of one part per million(!) – to
my knowledge, this is a very stringent requirement. The less strict
condition (on the left) indicates that δω can be at most 1% of Γ , as a
consequence of the high mechanical bath temperature.

9.4.5 Spectator mode scenario

We now turn to the study of the effect of the term N2 in Eq. (9.27)
and set g2 > 0. We recall that the spectator mode has frequency
Eq. (5.11)

ω2 = (1 +D)ω1 = ω1 +∆ω

where 1 > |D| > 0 (roughly expected to be at least a percent and
at most 30%). We assume that the Lorentzian filters are narrow
enough not to resolve the spectator mode: that is, Γ < ∆ω. In fact,
in this section, it will be useful to assume a little more, namely that
Γ 2 ≪ ∆ω2 ⇒ ν2 ≪ D2. We work with filter functions that are
perfectly tuned to the target mode and set ω̄ = ω1, and we set
ϕ = Tsep = 0 that maximise N0.
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Fig. 9.11 Exact ∆EPR < 2
against Γ and D. The
dashed line is the bound on
the spectral separation be-
tween the mechanical modes
from the sufficient condition
Eqs. (9.50).
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We find in Sec. E.6 (see also [Gut24, Theoretical predictions deriva-
tion .nb] 25) that the effects from the spectator mode dominate if [cf.
definition of W Eq. (9.41)]

(2Wω1)
2

∆ω2 ≫ 1 ⇐⇒ 4W2 = 4
γ1

γ2

Γ ro
2
Γ ro

1

Γ tot
2
Γ tot

1
≫ D2. (9.49)

(In the opposite case, the effects from the target mode dominate and
the results from the previous sections provide the main behaviour.) In
that case, a sufficient condition for entanglement is

(3 Γ tot
1 )3 < γ1

∆ω2

W2 (9.50a)

⇔ Γ tot
1 < Γ <

g1

g2

∆ω

3
√

3n2(C2 + 1)
. (9.50b)

We inspect numerically what this bound means in terms of the
parameters in Tab. 9.1. We find W ≈ 0.14. With D = 5%, Eq. (9.49)
indicates that the spectator mode is relevant, albeit perhaps not quite
the dominant contribution to ∆EPR. With Eqs. (9.50), we find that ∆ω
should be more than 3% of ω1 to detect entanglement (consistent with
entanglement detection in Fig. 9.3). Figure 9.11 shows a map of the
evaluation of the exact EPR-variance, where it detects entanglement.
The dashed line is the approximate bound on D from Eqs. (9.50). The
estimate is conservative apparently, probably because we used an
upper bound of N2 thus overestimating the effect of the spectator
mode; see [Gut24, Theoretical predictions derivation .nb] 26 for details.

The sufficient condition for entanglement detection with ∆EPR in
the single mechanical mode scenario Eqs. (9.46) has a form analogous

25. File path: see footnote 1.
26. File path: see footnote 1.
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Fig. 9.12 Exact ∆EPR < 2
minimised with respect to Γ .
T is the substrate temper-
ature and we assume n1 ≈
n2 ≫ 1 Eq. (8.2).

to Eqs. (9.50) with ∆ω taking the place of ω1 and the prefactor W.
Similarly to Eqs. (9.46), one should acknowledge the strong effect
of temperature on the detectability of entanglement. In Figure 9.12
we show ∆EPR minimised over the bandwidth Γ . We find that the
temperature of the substrate [assuming n2 ≈ n1 ≈ kBT/( hω1)] plays
a crucial role: below a kelvin, 5% spectral separation between the
mechanical modes is enough to observe entanglement. While above 5
kelvins, no entanglement is detectable, even for a spectator mechanical
mode 100% away from the target mode.
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We are now in the position to use the model and theoretical ma-
chinery exposed thus far to study candidate experimental devices.
First, we assess the feasibility of the protocol in light of the theoretical
results of Ch. 9, for the parameters of five existing setups that are dif-
ferent implementations of optomechanics: two membranes, one hard-
clamped [Gä20; HO17; MN17] and one soft-clamped [Tsa+17; Ros+19;
Che+20]; two levitated nano-particles, one in coherent-scattering con-
figuration [Del+19; Del19; Del+20b] and the other in back-scattering
configuration [Mag+21; Mag21; Mag+22]; and a photonic crystal
[GNG19]. A physical description of each of these devices will be
provided prior to their study and will clarify the naming. Except
for the back-scattering levitated particle, all the devices couple the
mechanical mode to a cavity mode, which is subsequently detected (i.e.
they are cavity optomechanical devices). My colleague Klemens Wink-
ler worked out the theoretical formulation of the protocol for such
levitated cavityless systems and showed that it works analogously to
what was presented in Part ii (his work will be presented elsewhere).
The photonic crystal was an experiment at Delft University of Techno-
logy in the group of Simon Gröblacher and operated by Jinkun Guo;
the soft-clamped membrane was implemented at the University of
Copenhagen in the group of Albert Schliesser; the remaining three
devices where in my group at the University of Vienna, the hard-
clamped membrane was fabricated by Claus Gärtner and operated by
Jason Hölscher-Obermaier, Ramon Moghadas Nia, Joshua Slater, and
Witlef Wieczorek; Manuel Reisenbauer, Kahan Dare, Aisling Johnson,
and Uros Delic operated the coherent-scattering particle; and Lorenzo
Magrini, Aisling Johnson, and Victor A. Camarena-Chávez operated
the back-scattering particle. We processed and studied the data from
four of these devices, while the treatment of the soft-clamped mem-
brane was performed independently of us by the group operating it
in Copenhagen.

organisation of part iii

Chapter 10 presents the theoretical predictions based on the para-
meters of the hard-clamped membrane and the back-scattering levit-
ated particle as examples of how to use the theoretical apparatus of
Ch. 9. The parameter study of the remaining three cavity devices is
exposed in App. G. All the results (raw data and codes) are available
on [Gut24].

109
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In Chapter 11, we synthesise the results of the analysis of four
different experimental datasets. The hard-clamped membrane was the
first device we studied and the results are presented and discussed
in [HO17, Ch. 5] and [MN17, Part. V]. The subsequent analyses of
the other three devices lead to essentially similar results, therefore
we present here only 27 the latest – most mature and arguably best
understood – data analysis of the levitated particle in back-scattering
configuration. We make sure to highlight the most relevant features
and behaviours observed in all four data analysis. In applying the
protocol to the different datasets, we refined certain choices in the
postprocessing procedure. Appendix H documents the differences
and updates compared to the data processing originally devised and
described in [HO17, Ch. 5] and in [MN17, Part. V].

We could not demonstrate convincingly stationary optomechanical
entanglement in the data analysis of any of the four devices. To our
knowledge, the protocol performed (independently from us) on the
soft-clamped membrane did not demonstrate entanglement either.
For the four cavity devices (hard/soft-clamped membranes, photonic
crystal and coherent-scattering particle) the spectator mode model
provides a partial explanation for the reason why it did not work; this
is discussed in Ch. 10 and in App. G.

Different from the theoretical model of Ch. 9, the data evaluation
can account for more than one mechanical mode in the early and late
temporal mode filters; this is the so-called multi-mode data evaluation
procedure already described in Jason Hölscher-Obermaier’s thesis
[HO17, Sec. 5.6]. Because our theoretical model cannot make predic-
tions for multi-mode evaluations, we do not have an explanation for
why the multi-mode evaluation of the cavity devices failed.

In the absence of a cavity, in the levitated nano-particle in back-
scattering configuration, Klemens Winkler was able to compute the
exact symbolic expression of the early–late state of the light detected;
his model assumes arbitrary many mechanical modes and – crucially –
it accounts for up to two modes in each temporal party (i.e. both early
and late parties have an internal structure with two modes each). 28

Therefore, Klemens’ exact analytical simulation can do more than
what is possible with the results of Ch. 9 for cavity devices. The thus
more advanced theoretical predictions can be compared to multi-mode
evaluations of numerical simulations and experimental data; this is
the reason for presenting the back-scattering device in Chs. 10 and 11.
We shall see excellent agreement between analytical and numerical

27. I want to emphasis that it was an immense privilege and potent opportunity
to receive so many datasets from so diverse setups. The processing of each dataset
relied on substantial experimental work (e.g. re-producing entire measurements,
characterising parameters, preprocessing data, etc.), intense collaborations, and
exchange of insights.

28. Derivations and details will be presented by Klemens elsewhere.



preface to part iii 111

simulations – in contrast to the extensive numerical simulations study
of the hard-clamped membrane in [HO17, Secs. 5.4-5.11]. This was an
important aspect for us to check that the data evaluation was correct.
Some encouraging similarities to the results with experimental data
are also highlighted.

summary of results

The main results of this part are:
• Evaluation of experimental data from four different experiments

by ourselves – plus one independent attempt on another setup –
did not demonstrate optomechanical entanglement.

• The single mechanical mode model always predicts detectable
entanglement between the temporal modes of the light when one
uses a necessary and sufficient entanglement test (i.e. not the EPR-
variance). This makes it difficult to determine how experiments
should be chosen (or improved) to be successful based on the
model.

• The addition of a spectator mode to the model explains why single-
mode evaluations of all cavity devices did not succeed as a result
of the presence of the spectator mode. The important lesson is that
the presence of stationary processes, even relatively far detuned
compared to the temporal mode filter bandwidth Γ , can affect
entanglement detection significantly. The spectator mode model
does not explain why the multi-mode evaluation failed as well.

• The data evaluation of the three cavity devices that we performed
ourselves led to similar behaviours as already documented in
[HO17, Ch. 5] and [MN17, Part V]. Therefore, we only report
that they appear similarly in different setups. Most relevant to
highlight are the systematic improvements when using the multi-
mode protocol, in the sense that the witness values are always
smaller then. This effect is observed in analytical and numerical
simulations as well.

• An argument that the data-processing must be "conservative", i.e. it
must mitigate possible false-positive detection of entanglement. To this
end we propose slight changes in the calibration and passive-losses
compensation procedure originally proposed in [HO17, Sec. 5.3.3].
Additionally, we describe a cross-validated entanglement test that
conservatively mitigates finite statistical effects.

• The comparison of exact analytical simulations, numerical simula-
tions, and the evaluations of experimental data. The good overlap
of analytical and numerical simulation results indicates that the
data evaluation implementation does correctly what we intended
(and modelled). Simulations and experimental data display similar
behaviours, which indicates that the former capture some relevant
physics.
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T H E O R E T I C A L P R E D I C T I O N S F O R C A N D I D AT E
E X P E R I M E N T S

This chapter applies the results of the protocol model discussed
in Ch. 9 to the specific parameter regimes of two existing devices:
a hard-clamped membrane in an optical cavity and a levitate nano-
particle in back-scattering detection without a cavity. The feasibility
of entanglement detection with our protocol is discussed in light of
the derived theoretical results. Similar analyses of three additional
existing experimental setups are provided in App. G.

10.1 hard-clamped membrane

Membranes are a thin layer of material that vibrates like a drum.
The light (of a cavity mode) is shone perpendicular to the membrane
so that the drum-mode deformations form the moving mechanical
part of the optomechanical device. The thin membrane is clamped
to some substrate that can be patterned to form a phononic shield:
that is, a bandgap for phonons at frequencies around several modes
of the membrane. Phonons at frequencies in the bandgap cannot
propagate (radiate) to/from the membrane, thus isolating the modes
in the bandgap; see for instance [Gä20, Ch. 4] for details. When the
phononic shield pattern is thick and stiff (i.e. it is the substrate that is
patterned), we say that the membrane is hard-clamped (as opposed to
soft-clamped ones, see App. G.1).

A hard-clamped membrane was designed by W. Wieczorek, J.
Hölscher-Obermaier and K. Gärtner, and fabricated by K. Gärtner
at Delft University of Technology. An optical cavity was built around
that membrane in a device that could be placed in a small liquid-
helium flow cryostat for relatively fast characterisation but limited
time at low temperature. This setup was built to test stationary op-
tomechanical entanglement with the protocol. The experimental work
and inconclusive attempts to perform the protocol were documented
in [HO17; MN17]. The parameters of this setup are given in Tab. 10.1.
The PSD of all six time traces of a typical measurement is shown in
Fig. 10.1.

The model devised in Sec. 5.4 was primarily designed to describe
clamped nano/micro-resonators subject to radiation pressure – pre-
cisely like the membrane setup at hand [Hof15]. The mechanical bath
model is the substrate on which the membrane is clamped. It is a

112
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Physical property Symbol Value Units

mech. frequencies ω1 1.19 × 106 × 2π [rad Hz]

ω2 1.86 × 106 × 2π [rad Hz]

cavity linewidth (FWHM) κ 5 × 106 × 2π [rad Hz]

detuning (red) ∆ −200 × 103 × 2π [rad Hz]

optomech. couplings g1 205 × 103 × 2π [rad Hz]

g2 13/40g1 [rad Hz]

mech. linewidths (FWHM) γ1 0.16 × 2π [rad Hz]

γ2 1.03 × 2π [rad Hz]

mech. quality factors Q1 7.3 × 106 []

Q2 106 []

mech. baths temp. T1 10 [K]

T2 T1 [K]

bath occupation numbers n1 1.76 × 105 []

n2 1.11 × 105 []

Table 10.1 Parameters of a hard-clamped membrane operated in my group at
the University of Vienna [MN17, Tab. 9.2].
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Figure 10.1 Power spectral density (PSD or NPS) of the hard-clamped membrane
device described in [HO17; MN17]. The upper plots are zoom of the same
frequency interval around the first two mechanical modes (indicated with ticks on
the upper axis); mind the different logarithmic and linear scales of the ordinate.
All six time traces are plotted: amplitude (dark colours) and phase (light colours)
of signal (blue), shotnoise (red), and darknoise (yellow).
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thermal environment at temperature T1 = T2 that is set by implement-
ing a certain cryogenic environment (or not) for the system. 1. The
theoretical results from Ch. 9 apply, and we make some predictions.

Equations (9.46) provide a sufficient condition for entanglement
being detectable with the protocol outlined in Sec. 7.2. Plugging
the parameters from Tab. 10.1 we find that Γ tot ≈ 390 × 103 Hz and
2
3

ω
3√Q1

≈ 20× 103 Hz so that the condition is not satisfied by a factor of
19. Therefore, our protocol cannot detect entanglement. This looks like
a bad start: in order to reduce Γ tot by a factor 19 [without changing
the rhs of Eqs. (9.46)], one needs to decrease both the driving power
and the environmental temperature by 2× 19 each. While reducing the
power is counter-intuitive, it is readily feasible; reducing the temperat-
ure on the other hand is experimentally more demanding/expensive
because it requires sub-Kelvin temperatures.

The derivation of the sufficient condition Eqs. (9.46) assumed res-
onant driving of the cavity ∆ = 0 Eq. (8.5). In practice, it is not easy
to operate exactly in this regime; this is because the blue detuned
case (when the drive frequency is larger than the cavity resonance
and ∆ > 0) is unstable 2 already at relatively small values of ∆ (small
compared to how well it can be controlled). Therefore, experiments
with small detunings usually operate in the slightly red detuned re-
gime (∆ < 0) [Gut+20]. Section 9.1.2 explains that the exact symbolic
expression for the state σtm of the early–late temporal modes of the
light can be computed on a computer; moreover, this expression can
be obtained for any detuning. We plotted in Fig. 10.2 (left) the exact
∆EPR for the finite detuning in Tab. 10.1. There, the protocol detects
entanglement between the light modes, contrary to the resonant case.
This goes against the intuition developed (heuristically) in Ch. 6 where
we argued that it is best to work on resonance to maximise the strength
of both sidebands in the detected light. We do not have a physical or
mathematical explanation for this effect.

Because we have access to the exact full state, we can compute the
logarithmic negativity (which is a measure of entanglement) instead
of ∆EPR (which is only a sufficient test). The result, with and without
detuning, is plotted in the right panel of Fig. 10.2. In both cases the
logarithmic negativity detects entanglement: this illustrates that ∆EPR

is a sub-optimal entanglement test. This reflects the behaviour of
Fig. 9.4 where the optimised witnesses reveal more entangled states

1. For the theorist readers, there are essentially three reference temperatures for
bulk environments: room temperature at about 300K; liquid Helium temperature
at about 4 K; tens of milli-kelvins (and below) that require dilution refrigerators.
Roughly speaking, room temperature down to 10-4 K requires comparatively little
experimental effort

2. Physically, this is when the two-mode squeezing process exciting the mechan-
ical oscillator, dominates over the beam splitter process cooling it down. Mathem-
atically, the stability threshold is given by the Ruth-Hurwitz criterion, cf. Sec. 5.3.1,
[Gen+08], and [Hof15, Sec. 1.3.1].
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Figure 10.2 (left) Exact EPR-variance for the parameters of Tab. 10.1. The
temporal modes are entangled when ∆EPR < 2. ∆EPR for resonant drive ∆ = 0 is far
above and not visible here. (right) Logarithmic negativity (logneg) entanglement
measure obtained from the exactly computed covariance matrix. The temporal
modes are entangled when the logneg is > 0.

than the exact EPR-variance. The logarithmic negativity varies little
depending on the detuning 3: the maximal amount of entanglement is
the same and at the same temporal mode bandwidth Γ . In the detuned
case, more entangled states are detected as Γ varies.

Figure 10.2 indicates that one can expect to successfully detect en-
tanglement with this setup. It turns out that for all parameters we
ever looked at – and in particular for the parameters of the four cavity
devices we studied in detail – the logarithmic negativity always detects
entanglement for some bandwidth Γ . This reminds us of the partic-
ularly concise expression Eq. (9.45) for ∆EPR predicted entanglement
detection for any finite cooperativity. In particular, on Fig. 9.4 the
optimised witness (that detects all entangled states like the logarithmic
negativity) would detect entanglement at very low cooperativity. This
behaviour echoes – and most probably is a consequence of – the "uni-
versality of optomechanical entanglement" (in the absence of sensing
noise) demonstrated in [MDC10]. 4 From an experimental point of
view however, it is a little too good to be true... and, indeed, the

3. Strictly speaking, only positive logarithmic negativity is well defined in terms
of entanglement; standard definitions in the literature identifies negative values to
zero, see [AI07, Eq. (68)] for example. We still plot the negative values because, when
no entanglement is detected, the negative values are a heuristic indicator of how far
we are from entanglement – this follows the convention from [HO17, App. C.1].

4. For more on this phenomenon, we recommend the work of Haixing Miao, Helge
Müller-Ebhardt, Stefan Danilishin, and Yanbei Chen [Mia+10a; Mia+10b; MDC10;
DK12], for instance. Also the more recent (and coming up) works of Su Direcki picks
up on that concept in more general terms [Dir+24].
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Figure 10.3 (left) Exact EPR-variance, minimised over the temporal filter band-
width Γ between 1kHz and 10MHz. Optomechanical couplings g1 (with fixed
ratio to g2) and thermal bath occupation number n1 (with fixed ratio to n2) are
varied; both axes are ratios to the nominal value in Tab. 10.1. The results from
the approximate ∆EPR Eq. (9.27) are not shown but they are close to the exact
ones here. (right) Logarithmic negativity maximised with respect to the temporal
filter bandwidth Γ .

model is too simplistic and in reality additional phenomena must be
accounted for to make accurate predictions.

In Section 9.4.5 we studied the effect of a second mechanical mode
which is not taken into account by the temporal mode filtering. In
other words, the analysis does not attempt to extract information about
this mode from the associated sidebands in the detected light. We
had called this mode a spectator mode. Eqs. (9.50) provides a sufficient
condition for entanglement detection with the protocol (using ∆EPR).
The modes of the hard-clamped membrane are relatively far apart
(compared, for example, with the soft-clamped membrane treated in
App. G.1): in Tab. 10.1, the spectator mode is some 700 kHz above
the target mode, i.e. a relative spectral distance D ≈ 58%. We get

3
√
γ1∆ω2/(27W2) ≈ 28.8× 103 Hz, a factor 13 less than Γ tot

1 , so that the
theoretical model again predicts that there is no detectable entangle-
ment with ∆EPR. Numerical evaluations also reveal no entanglement
with the logarithmic negativity. 5

We sweep over some parameters to establish "how far" the system
is from detectable entanglement in this spectator mode scenario. The
inter-relation between the parameters in membranes are: the relative
couplings between the modes relate to the geometry of the vibration
pattern and its overlap with the light mode [Gä20; HO17; MN17],

5. Recall that, in the spectator mode scenario, we could not incorporate the finite
detunings to the exact calculation (nor spacing Tsep between the temporal modes).
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hence we keep the ratio g2/g1 = 13/40 fixed as in Tab. 10.1; similarly,
the quality factors are fixed by the design (e.g. material properties,
stress, bandgap, mode shape); lastly, the bath of each mode is at
the same temperature T of the substrate, which can be changed, but
maintaining the ratio n1/n2 given by ω2/ω1 = 1 +D (in the high
temperature limit). Under these constraints, we varied drive power
(g1) and temperature (n1) to see when entanglement is detected. The
results are plotted on Fig. 10.3. As already clear from Eqs. (9.50), lower
temperatures are necessary: presently, a reduction by a factor 10 or
more is needed. Less intuitive, it appears necessary to decrease g1; and
there seems to be an optimum at 20-30% of the nominal value from
Tab. 10.1. Figure 10.3 shows the contour plot for both the EPR-variance
and the logarithmic negativity. Both coutours are relatively similar
(although the logarithmic negativity detects more entangled states, as
it should), so that ∆EPR is almost as informative as a necessary and
sufficient test in this regime – and the sufficient condition Eqs. (9.50)
applies approximately to necessary and sufficient tests. The result
with the approximate ∆EPR formula Eq. (9.27) is not shown but it
captures well the exact behaviour; cf. [Gut24].

Figure 10.4 shows the EPR-variance and logarithmic negativity
minimised over Γ for different coupling strengths (g1/g2 fixed) and
spectator mode spectral distance, for a substrate temperature 10 times
less than in Tab. 10.1 (i.e. ≈ 1 K). Apparently, even at this low bath
temperature, the constraint on the mode spectral distance remains
quite stringent and one cannot afford a much closer spectator. The res-
ult with the approximate ∆EPR formula Eq. (9.27) is not shown but it
captures well the exact behaviour. We decrease the temperature of the
substrate by another factor of 2 (i.e. to 0.5 K) and show the results in
Fig. 10.5. Exact logarithmic negativity, exact ∆EPR, and approximates
∆EPR (not displayed) yield similar results. Some entanglement is detec-
ted with the spectator mode below the target mode (ω2 < ω1), which
was not the case in Fig. 10.4. We do not have a clear understanding
for the asymmetry between spectator mode above or below the target,
but it could be studied from Eq. (9.27) which reproduces the effect.

The model here is for a spectator that is a harmonic mechanical
mode, but I think it can be interpreted as a prototype model for any
process with a component in the measured light. From my experience
with experimental data, strong low-frequency signals in long time
traces are usually typically present in the records. The asymmetry
making low frequency spectator modes seemingly more detrimental
is an incentive to select (or design) the setup with accordingly quiet
(or flat) low frequency components.

Lastly, we fixed g1 (and accordingly g2) to 10% of its nominal value
in Tab. 10.1, which is close to the best operating regime in Fig. 10.3.
We then swept over ω2 and the substrate temperature n1, keeping the
ratio with n2 fixed and independent of ω2 (which is not too inaccurate
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Figure 10.4 (right) Exact ∆EPR, minimised over Γ (1kHz to 10MHz), with a
substrate 10 times colder than in Tab. 10.1. Results from the approximate ∆EPR
Eq. (9.27) are close to the exact ones here. We draw the attention of the reader
on the rather modest separability violation of the EPR-variance test. (right) Exact
logarithmic negativity maximised over Γ . It detects entanglement in this case for
about 10 times less driving power. No entanglement is detect for spectator modes
at lower frequency than the target (when D < 0).
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Figure 10.5 (right) Exact ∆EPR, minimised over Γ between 1 kHz and 10 MHz,
with a thermal bath 20 times colder than in Tab. 10.1. Again, the result from the
approximate ∆EPR are very similar. (left) Exact logarithmic negativity maximised
over Γ . Entanglement is detected when the spectator modes has lower frequency
than the target (i.e. where D < 0), albeit in smaller amounts.
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Figure 10.6 (right) Exact ∆EPR, minimised over Γ between 10 Hz and 1 MHz,
with g1 10 times less than in Tab. 10.1. The approximate formula for ∆EPR gives
similar results. (left) Exact logarithmic negativity maximised over Γ . Possible
numerical instability at small positive D.

in the large occupation limit n1, n2 ≫ 1 and for |D| < 1). The results
are displayed in Fig. 10.6. The requirement on temperature is decisive.
The asymmetric nick at lower D in the logarithmic negativity is not
understood and looks like a numerical problem.

10.1.1 Summary of predictions for cavity devices

In Appendix G, we present a similar analysis of the three additional
cavity optomechanical devices: a soft-clamped membrane, a soft-
clamped photonic crystal, and a coherent-scattering levitated nano-
particle. The results of the analysis of all four parameter regimes can
be summarised as follows: the single mechanical mode model always
predicts detectable entanglement with a necessary and sufficient test,
but never with the EPR-variance (in the resonant case). This is the
apparent "triviality" of entanglement with the single mechanical model
discussed above. In some cases, red detuning can lead to entanglement
detection with the EPR-variance, as we saw in Fig. 10.2.

On the other hand, for all devices, the addition of a spectator mode
leads to no entanglement detection, even with logarithmic negativity.
Similarly to the hard-clamped case, logarithmic negativity and by
∆EPR detect almost the same entangled regimes (within the span of
our numerical exploration). As a consequence, the sufficient condition
for entanglement in the presence of a spectator mode Eqs. (9.50) is
informative on how to modify the parameters to be able to detect
entanglement. In all cases (except for the coherent-scattering levitation
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system), reducing the mechanical bath temperature is most effective,
and reducing the driving power is necessary in some cases.

The case of the levitated nano-particle in coherent-scattering config-
uration is quite different from that of the clamped systems, for which
the code was originally designed. Moreover, my understanding of the
inter-relations of the different parameters did not lead to meaningful
or insightful parameter sweeps. 6

10.2 levitated particle in back-scattering configura-
tion

We study the parameters of a levitated particle in back-scattering
configuration [Mag21, Chs. 4 & 5]. The nano-particle is held in the tight
focus of an optical tweezer, similar to the coherent-scattering setup of
Sec. G.3. The detection channel of this device are the modes of light
recollected by the lens focusing the tweezer (see Sec. 4.3); mainly, it is
the light that is scattered back (reflected) by the particle. Importantly,
no cavity is involved in this setup (contrary to the coherent-scattering
configuration). The decoherence mechanisms are the same in both
levitation setups in the considered operation regime: photon recoil
dominates and gas scattering is second.

In the absence of a cavity, the optomechanical model of Ch. 5 and
the theoretical results of Ch. 9 do not apply. A rigorous description
and modelling of the protocol for cavityless scenarios was thoroughly
derived by my colleague Klemens Winkler, and it will be presented
elsewhere. For the purpose of the presentation in this document,
it is enough to say that the theory and mechanisms described in
Ch. 9 are similar, and the intuition remains analogous – in fact, the
mathematical complexity is slightly less. Klemens produced a code
that computes the exact analytical state of the light’s early and late
temporal modes, for arbitrarily many mechanical modes. Moreover, he
extended the theoretical derivation to 2-mode evaluation, where early
and late temporal parties account for two modes each (cf. Sec. 8.2.1);
Klemens’ software is a Mathematica code available on [Gut24, cavless
anaSim .nb] 7 (with Klemens’ generous permission). The theoretical
model for the 2-mode evaluation in the presence of a cavity is not

6. In private communications with some colleagues (that are levitation experts),
I was explained that, in principle, the spectator modes coupling can be attenuated
significantly (see also [Del19; GB+19]), to the point that their effect is not important
according to Eq. (9.49). This means that the spectator mode study may not be relevant
then. Nevertheless, it could be another process that disturbs entanglement detection
and the spectator mode model provides a first approximation on the bandwidth next
to the target mechanical mode that should be free of noise. In my experience, the
necessary band without noises or mechanical modes is broader than one expects.

7. File path:
Thesis_CGut_StationaryOptomechanicalEntanglement/chapter_structure/

10ch_CandidateExp/Processing_and_data/backScattLev/cavless_anaSim.nb
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Physical property Symb. Value Units

(z,x,y)-mech. modes ωj (76.6, 177.8, 228.5)× 103 × 2π [rad Hz]

meas. back-action Γba
j (5, 0.62, 0.24)× 103 × 2π [rad Hz]

effective heating Γth,j (2.7, 1.1, 0.9)× 103 × 2π [rad Hz]

effective damping γeff,j (90, 0.5, 0.5)× 2π [rad Hz]

detection efficiency ηdet,j (0.11, 0.006, 0.003) []

Table 10.2 Levitated nano-particle in backward-scattering detection configuration
without a cavity [Mag+22], with j = z, x, y. Parameters generously provided and
commented for us by Lorenzo Magrini, Aisling Johnson, and Victor Camarena-
Chávez.

available (yet), hence this cavityless system has a more advanced
analytical description. In addition to the automated analytical exact
results, we also had access to numerical simulations of the system,
which had been successfully used to obtain the results in [Mag+21;
Mag+22] – the simulation implemented in Python is the work of
Lorenzo Magrini and the code is available on [Gut24, cavless numSim
.py] 8 (with Lorenzo’s generous permission). We are thus in a position
to assess our implementation of the protocol also in the multi-mode
evaluation case. Checking that the postprocessing method is sound
became an important point that is relevant to present here. Indeed,
after the failed attempts to observe entanglement in three different
datasets, we became suspicious that the data analysis method and/or
implementation might not do what we had intended or modelled.

The QLE of the cavityless scenario are those from Eqs. (4.10) with
the system Hamiltonian being only the mechanical harmonic evolution
(and without cavity). The radiation pressure force that implements
the optomechanical interaction is the photon recoil force ξrad and the
coupling rate is the photon recoil heating rate Γrad. The (coupling)
rate at which photons are emitted in the output modes in the input–
output formalism is also Γrad Eqs. (4.13c). From the perspective of the
detected light, Γrad corresponds to the measurement back-action and
is denoted by Γba

j (j = z, x, y) in the following [Mag+21, Suppl. S.5]
and/or [Mag21, Ch. 5].

Table 10.2 lists the parameters of the experimental setup; the para-
meters are those of the dataset that demonstrated ponderomotive
squeezing reported in [Mag+22]. The target mode is the z-motion
along the tweezer beam axis – intuitively, it is the motion which is best
encoded in the back-scattered detected mode. The effective damping
rates γeff,j are the sum of all damping along the direction j and it is
dominated by feedback damping in the z-direction and by gas damp-

8. File path:
Thesis_CGut_StationaryOptomechanicalEntanglement/chapter_structure/

10ch_CandidateExp/Processing_and_data/backScattLev/cavless_numSim.py
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ing in the transverse directions. The effective heating rates Γth,j are
the noise contributions from the processes not related to measurement
and they are mainly due to the residual gas collisions acting like a
thermal bath for the different mechanical frequencies. Finally, the de-
tection efficiency ηdet incorporates the collection visibility νcoll [from
Eqs. (4.13c)] and all the passive losses in the detection channel; see
App. F.2 for details on passive losses in homodyne detection. It is the
large collection efficiency of the z-motion, compared to the collection
efficiency of the transverse modes, that designate it as the target mode.

In the following, we consider quite a few configurations and it
is worth introducing a naming convention. One speaks of m-modes
analytical or numerical simulations when m mechanical modes (at fre-
quencies ωj) are included in the dynamical model (i.e. in the QLE
Sec. 5.4). An n-modes evaluation has n filtering mode functions in both
the early and the late party: they account for sidebands at n differ-
ent frequencies (say ω̄j) thus producing 4n-by-4n reconstructions of
covariance matrices, as explained in Sec. H.4.1.

Below we refer to 1- and 2- sided evaluations: the latter is a particular
form of multi-mode evaluation where the early mode also demodu-
lates the blue sideband (additionally to the red one) and the late mode
demodulates the red sideband. The technique was proposed by Kle-
mens Hammerer and is described in [HO17, Sec. 5.8] (see also our
comments in Sec. H.4.2).

With this nomenclature one speaks of "m-modes analytical or nu-
merical simulations, with n-modes, 1- or 2- sided evaluations".

10.2.1 Analytical and numerical simulations

In the following we call analytical simulation the exact symbolic
expression of the covariance matrix of the early–late temporal modes
of the light; the computation is analogous to the cavity scenario;
cf. Sec. 9.1.2. The symbolic covariance matrix is evaluated with the
numerical values of the device parameters and tested for entanglement
with the EPR-variance, the logarithmic negativity, or an optimised
witness; cf. Sec. 3.4. The analytical code was extended to account for a
second mode in the evaluation and compute the exact state, which is
an 8-by-8 matrix. That means that the exact analytical calculation can
compute the 2-mode 1-sided evaluation or the 1-mode 2-sided case.
In the following, the number of simulated modes is 2 or 3. 9

9. A technical subtlety regarding the orthonormalisation of the second mode: the
shape of the orthonormalised mode functions depend on the orthonormalisation
method (cf. [HO17, App. C.2], Secs. 8.2.1, and H.4.1), hence the method must be the
same in the analytical simulation as in the data postprocessing procedure. In the
analytical code it is calculated by hand with the Gramm-Schmidt algorithm, while we
preferred using Matlab’s qr() decomposition function (based on Housholder reflec-
tions) in the data evaluation code for stability (e.g. numerical accuracy). Whenever



10.2 back-scattering levitation 123

103 104 105 106

Γ [Hz]

0

1

2

3

4

5

6

7

8

w
cr

o
ss

1-mode 1-sided eval.

sep. bound
ana. sim.
num. sim.

103 104 105 106

1.8

2.0

2.2

2.4

2.6

zoom

Figure 10.7 Cross-validated optimised witness values for different filtering temporal
mode bandwidths Γ . The simulations are for one mechanical mode and the
evaluation procedure is 1-mode 1-sided. The exact analytical results is the
continuous yellow line and numerically generated time traces post-processed like
experimental data are the blue markers. The error bars are the 5/95th percentile
of the bootstrap distribution of witness values. Entangled states are below the
separability bound at 2. The right panel is a close up zoom on the entanglement
detection. One recognises a "trough+bump" shape.

The numerical simulations approximately integrate the QLE evalu-
ated with the experimental parameters. The output is simulated time
traces of both quadratures of the light being detected. It is an artificial
dataset that mimics the output of a real experimental run. Then, one
processes these numerically simulated time traces according to the
protocol, just like experimental time traces: apply the mode functions
and produce traces of pulse pairs, then reconstruct the corresponding
temporal parties’ covariance matrix according to the cross-validation
optimised entanglement test, and bootstrap over reconstructed covari-
ance matrices. See [HO17, Ch. 5] for the details of the protocol data
analysis, but also Sec. 11.1 and Appendix H.

We draw the reader’s attention on the important difference between
both simulations and approaches: the analytical method provides the
state of the temporal modes directly (and exactly) as a result of our
modelling of the protocol; the numerical simulation and subsequent
postprocessing (also named evaluation) mimic the way experimental
data are generated and processed. The output of both procedures are
covariance matrices and witness values that should (must!) match,
but, importantly, they were obtained in very different ways. In fact,
if they are not the same (up to statistical fluctuations and inaccuracy

comparing analytical and numerical simulations, one uses the Gramm-Schmidt
method (and checks that it remained accurate enough in the cases at hand).
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Figure 10.8 1-mode analytical (continuous yellow line) and numerical (blue
markers) simulations and 1-mode 2-sided evaluation. The separability bound
violation is larger compared to the 1-sided evaluation in Fig. 10.7 (the ordinates
are the same across the figures).

of the approximate numerical method), this signals a problem in the
postprocessing (e.g. its implementation, etc.) – assuming that both
simulations are correct.

10.2.2 1-mode simulations, 1-mode 1&2-sided evaluations

This is the basic scenario of the protocol described in Part ii and ori-
ginally discussed in [Gut+20]. The witness plots of the exact analytical
calculation and that of the numerically simulated time traces evalu-
ated with the protocol are displayed on top of each other in Fig. 10.7,
for the parameter of Tab. 10.2. The numerically simulated data (blue
discontinuous markers) were studied just like real experimental data:
the error bars are the 5/95th percentile confidence interval of the
bootstrap distribution (cf. Sec. H.9) and the dot is centred on the
cross-validated witness values wcross Eq. (11.1); see details in Sec. H.8.
The analytical result (continuous yellow line) overlaps well with the
numerical one, and hence both methods make similar predictions,
which is a first evidence that the procedure and our implementation
of it are correct.

We draw the reader’s attention to the shape of the curves, spe-
cifically the "trough" at filter bandwidths Γ just above 10 kHz and
a "bump" just above 100 kHz. We will see in the next chapter that
we recover it in the experimental data as well (in Fig. 11.3 below);
for that reason we give this feature the (highly imaginative) name of
"trough+bump" shape.
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Figure 10.9 2&3-mode simulations (analytical is the continuous yellow line and
numerical are the blue markers) for 1-mode 1&2-sided evaluations. The first row
of plots is for 2-mode simulations and the second row is for 3-mode simulations.
The columns are for 1- or 2- sided evaluations.

Figure 10.8 shows how the 2-sided evaluation improves the witness
plot compared to the 1-sided case of Fig. 10.7, in the sense that the
separability violation is greater. This is a general effect observed in
the study of all the datasets as explained in Sec. 11.1 below. Qual-
itatively, one recognises at least the trough from the characteristic
"trough+bump" shape.

10.2.3 2&3-mode simulation, 1-mode 1&2-sided evaluations

We add some complexity to the simulations and introduce addi-
tional mechanical modes at 178 kHz (transverse x-motion) and 229
kHz (y-motion); cf. Tab. 10.2. We keep the evaluation single-mode.
The result of 2&3-mode simulations, 1-mode 1&2-sided evaluations
is summarised in Fig. 10.9. Again, analytical and numerical results
overlap well, indicating that the method and its implementation are
correctly doing what we expect it to. Comparison of upper and lower
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Figure 10.10 2&3-mode simulations (analytical is the continuous yellow line and
numerical are the blue circles) for 2-mode 1&2-sided evaluations. Demodulating
the y-motion in these 2-mode evaluation recovers entanglement that was not
detected in the 1-mode evaluations of Fig. 10.9. The first row of plots is for
2-mode simulations and the second row is for 3-mode simulations. The columns
are for 1- or 2- sided evaluations. The analytical code cannot treat more than two
modes per party, hence no continuous line in the second column.

plots shows that the presence of a third mechanical mode does not
make a significant difference. Comparison of left and right columns
confirms that 2-sided evaluations perform (slightly) better (in the sense
that the witness values are smaller) in this configuration as well. The
"trough+bump" shape is well recognisable.

The 1-sided evaluation on the top left is essentially the spectator
mode scenario treated analytically in Sec. 9.4.5. The addition of
spectator mode(s) prevents the detection of entanglement, which is
analogous to what we had found for all cavity devices; cf. Sec. 10.1 and
App. G. 2-sided evaluation is not enough to retrieve the entanglement.
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10.2.4 2&3-mode simulations, 2-modes 1&2-sided evaluations

In the more complex situations involving several mechanical modes,
one can use the multi-mode evaluation method, which accounts for
the additional mode(s); see [HO17, Sec. 5.6], Secs. 8.2.1, and H.4.1.
Currently, the cavityless exact symbolic calculation is possible for two
modes per temporal parties, i.e. it can simulate 1-mode 2-sided or
2-mode 1-sided evaluations.

The result of evaluations accounting for 2-modes (z and x) are sum-
marised in Fig. 10.10. The overlap between analytical and numerical
simulations is less good at low pulse bandwidths compared to what
we saw above. Interestingly, entanglement is detected according to
both simulations, which indicates that the multi-modal approach is
a possible way to cope with additional mechanical modes. 10 This
is consistent with our observation that multi-mode evaluations of
experimental datasets lead systematically to smaller witness values; cf.
Sec. 11.1. The 2-sided evaluation leads to larger separability violations.

Adding a third mechanical (spectator) mode in the y-direction
makes little difference to the analytical result. The overlap with
the numerical simulation is significantly less good. The qualitative
trough+bump shape, at Γ ≈ 10 and 100 kHz respectively, remains
discernible however.

10. With longer numerical simulations – or with the technique of Sec. H.9.1 – the
error bars of the numerical simulations are smaller.
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A N A LY S I S O F E X P E R I M E N TA L D ATA

We analysed experimental data from the hard-clamped membrane,
the photonic crystal, and the levitated particle in coherent-scattering
configuration. The analysis of the former is presented in the theses
of Jason Hölscher-Obermaier [HO17, Ch. 5] and Ramon Moghadas
Nia [MN17, Part V]. The analysis of the other two cavity devices
is a modified version of the original procedure; the relevant details
of the analysis pipeline are provided in App. H. The analysis of all
three cavity devices did not yield qualitatively different results. A
summary of the evaluation is provided in Sec. 11.1 below, where
we highlight the relevant features and link to the considerations in
App. H. In Section 11.2, we present the evaluation of the dataset
used in [Mag+22] to demonstrate ponderomotive squeezing in a back-
scattering levitation setup without a cavity; see also [Mag21, Chs. 4 &
5].

11.1 data evaluation procedure and results for cavity

devices

The detailed study of experimental datasets from three cavity op-
tomechanical devices remained unsuccessful in demonstrating sta-
tionary optomechanical entanglement. Data, results, and codes are
available upon request. We make the following comments.

Because testing for Gaussian entanglement amounts to determining
if the state is squeezed below the vacuum noise level, it is of crucial
importance to characterise the latter accurately but also conservatively
to avoid "false positive" entanglement detection – i.e. apparent positive
detection of entanglement while the "true" state is actually separable.
The logic we follow is that proposed by Jason Hölscher-Obermaier
[HO17, Sec. 5.3.3] where the data are calibrated to units of vacuum
fluctuation amplitudes (interchangeably called shotnoise units in this
document) based on a measurement thereof. The goal is to express the
covariance matrix of the temporal modes of the light in dimensionless
units where squeezing along the (generalised) quadrature r corres-
ponds to

〈
r2
〉

sym < 1/2, as in the theoretical development of Parts i

and ii. Detailed discussion of the calibration is provided in Sec. H.6.

The optimised witness method (cf. Sec. 3.4.2 and [HE06]) is the
preferred entanglement test because it detects more entangled states
than the EPR-variance. Moreover, we prefer it over the logarithmic

128
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negativity because, when the temporal modes themselves are consti-
tuted of several modes, it remains necessary and sufficient [HE06],
contrary to the PPT-criterion. This is relevant for the multi-mode
evaluation method; see [HO17, Sec. 5.6] for details, as well as our
comments in Secs. 8.2.1 and H.4.1.

The reconstructed covariance matrices of the temporal modes are
necessarily imprecise, at least due to the finite statistics of the datasets.
It is then possible that the optimisation algorithm identifies statistical
fluctuations as quantum correlations, leading to lower witness values
than for the true state. This is a bias towards entanglement that
can lead to false positive detection of entanglement. To alleviate
this caveat, Jason Hölscher-Obermaier (with inputs form Sebasitan
Hofer, Adrian Steffens, Ramon Moghadas Nia, Joshua Slater, Witlef
Wieczorek and the present author) devised a cross-validation scheme
that goes as follows: estimate the state once with half of the data (call it
the training covariance matrix σtrain

sig ) and compute the optimal witness
Wcross

opt from it; then use the second half of the data to reconstruct
the state a second time, denote it σcross

sig , and obtain its cross-validated
optimal witness value

wcross := Tr
[
Wcross

opt σcross
sig

]
. (11.1)

This method is (conservatively) biased towards separability 1 as is
shown in Fig. H.1. The technique was used in the results presented in
[MN17].Section H.8 various practical considerations of choosing the
entanglement test, as well as the bias of the logarithmic negativity and
EPR-variance.

We compute the confidence intervals on the witness values deduced
from the estimated covariance matrix with the bootstrap statistical
method [ET94]. The witness matrix Wcross

opt obtained from half the
data is computed once, while the bootstrap is used to repeatedly
reconstruct the state σcross

sig from the second half of the data (resample
by drawing samples with replacement, according to the bootstrap’s
prescription); see Sec. H.9 for details.

A direct measurement of vacuum fluctuations (shotnoise) is neces-
sary for the calibration outlined above. With the available shotnoise
data, we can perform the following sanity check: there must be no
entanglement between early–late temporal modes of vacuum noise.
Moreover, the state of temporal modes of vacuum is the vacuum
state again, hence saturating the separability bound; see Sec. H.6.
Henceforth, we systematically compute the (cross-validated) witness
values of temporal modes of shotnoise data. In practice, one typically
observes that shotnoise witness values "dive" significantly below the
separability threshold at large Γ , i.e. for broad filters in frequency. An

1. This is because Wcross
opt is not optimal for σcross

sig in general. It follows that the
cross-validated witness test is no longer necessary
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Figure 11.1 We simulated white noise and applied the same (Butterworth, forward
and backward) lowpass filter as in the experimental data from the back-scattering
levitated particle. The a corner frequencies applied to the simulation are 1 and
7 MHz. We then evaluate the lowpass filtered simulated white-noise and the
continuous lines are the resulting witness values. At higher corner frequency
the witness values "dive" at larger bandwidths Γ . In black are witness values of
experimental shotnoise data with filter corner at 1 MHz (crosses) and 15 MHz
(dots). The confidence intervals from the bootstrap are not shown for clarity; it is
less than 0.05 above and below the dots and crosses.

example is shown by the black crosses in Fig. 11.1, which should make
clear what we mean by "diving witness values". The interpretation is
that the reconstructed temporal modes of vacuum encode correlations
that should not be there. The possibility of this caveat highlights the
difficulty of certifying quantum correlations in Gaussian states. At the
level of the physical states, squeezing below vacuum noise is a purely
quantum feature that cannot be faked (or accidentally created by some
disturbance) 2; but at the level of the amplified signal (recorded in the
memory of a computer) any sort of fluctuations (be it electronic or of
statistical nature, possibly introduced by the data processing) might
make the state look like it is squeezed.

If no better solution is available to cope with the "diving shotnoise"
witness, one practical way forward is to reconstruct states only for
those filter bandwidths that do not incorporate significant correlations;
that would be up to Γ ≈ 30 kHz for the black crosses in Fig. 11.1.

In the case of the back-scattering levitation setup, we could relate
the diving behaviour (black crosses in Fig. 11.1) to the lowpass filter at

2. I often heard (and I used to think like that too) that entanglement (or squeezing)
is the quantum resource, hence it is the "hard thing" which is inimitable – i.e. it cannot
be faked. Somewhat in the spirit of quantum cryptography and key distribution
where the quantum nature of the state makes it "uncounterfeitable".
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1 MHz that was applied in postprocessing of the data to avoid aliasing.
Consulting with the experimentalists, we increased the lowpass corner
frequency to 15 MHz. The corresponding shotnoise witness values
are the black dots in Fig. 11.1. Although the lowpass was relatively
far from the targeted mechanical mode in frequency, we see that it
affects strongly the entanglement detection for filter bandwidth Γ > 30
kHz (much less than the lowpass corner frequency at a MHz). This
is yet another instance of strong effects from processes spectrally far
from the targeted mechanical mode. The experimental traces were
additionally filtered with a highpass at about 2-3 kHz (to reduce the
effect of low-frequency noises); see PSD in Fig. 11.2. The high-pass
is spectrally much closer to the mechanical mode than the lowpass.
Simulations do not show that this filter affects the shotnoise witness
values much. My current conjecture is that there are far fewer data
points at these low frequencies, hence they affect the temporal mode
states estimations much less.

The same effect of high- and low- pass filtering had already been
observed and identified by Jason Hölscher-Obermaier in his thesis
[HO17, Sec. 5.11]. Tobias Westphal proposed to inverse the effective
band-pass and effectively "flatten" the PSD. This technique has been
used to analyse the hard-clamped membrane data and is documented
in the thesis of Ramon Moghadas Nia [MN17, Sec. 10.4 and fig. 10.4].

We saw theoretically in Sec. 10.2 that extending the temporal mode
basis to extract information from more sidebands of the detected
light (the so-called multi-mode evaluation) is advantageous in terms of
entanglement detection; multi-mode evaluation is described in detail
in [HO17, Sec. 5.6] (see also our comments in Secs. 8.2.1 and H.4.1).
In all four experiments we studied, the multi-mode evaluation led
systematically to smaller witness values. In the next section, we will
see how it affects the results of the experimental data analysis for the
back-scattering levitated particle.

The apparently beneficial effect of accounting for more mechanical
sidebands in the early–late state led us to try systematically many
combinations (whenever possible, we tried them all) in all the exper-
imental data we studied. In our experience, including more than 6
modes (i.e. 3 mechanical modes in 2-sided configuration) leads to
instabilities of the optimised witness and its values can become very
large (several hundreds or thousands) or even negative; these "wild"
witness behaviours are, as far as we can tell, impossible to interpret
meaningfully.

In principle, it is possible to compensate for unavoidable passive
losses (i.e. inefficiency and mode mismatch) in the detection of the
light. This is explained in Sec. F.3 where we derive the inefficiency com-
pensation formula Eq. (11.2) below from a model of dual-rail homodyne
detection, under the assumption that the losses and amplification in
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both arms are the same; see also Sec. H.7. The formula relates the es-
timated covariance matrix of the temporal modes σtm

sig (after darknoise
correction and shotnoise calibration) to the ideal one σtm

sig

σtm
sig ≈ σtm

sig :=
1
ηdet

[
σtm

sig − (1 − ηdet)σ
tm
sn

]
. (11.2)

Where σtm
sn = σvac = I/2 and the (total) effective detection losses

0 < ηdet ⩽ 1/2 cannot exceed one-half as a consequence of measuring
both quadrature simultaneously with a dual-rail homodyne detection
scheme; see Sec. F.4 for a comment on heterodyne detection that
has the same limitation. This formula is similar to that in [HO17,
Sec. 5.3.3] and the difference is that, there, they use the estimated state
of shotnoise σtm

sho where we use the ideal matrix σtm
sn which is diagonal;

see our comments and explanations in Sec. H.7.

In our exploratory approach of the datasets, we tried a large range
of variations and extensions of the data-processing. Among other
things, we used half-Gaussian temporal mode profiles (partly pro-
posed by Lorenzo Magrini) in order to restrict the filters’ extension in
frequency space. This did not improve the results. The most successful
attempt was to use asymmetric decay rates for the temporal modes
demodulating first and second mechanical modes; see Sec. H.11.

Not knowing precisely how to best perform the data analysis and
optimising the analysis, there is a risk of introducing an over-fitting
bias. This needs to be assessed and, if there are reason to suspect it, it
must be excluded in some way. The best option is to apply the pro-
cedure (decided prior the data-processing) on a new or independent
dataset. When additional datasets are not available, one can attempt
to explain and cross-check the experimental results with theoretical
predictions. Also, one can modify the analysis (slightly) in order to
exhibit some other (theoretically) expected behaviour. The idea is to
show that the wanted feature is not an artefact of the analysis.

11.2 data evaluation of back-scattering levitated nano-
particle

This section presents the results of the protocol applied to the
data from [Mag+22] (back-scattering levitation). It is our latest and
most mature entanglement analysis of experimental data applying all
the considerations mentioned above σtm

sn ; the details are described in
App. H. Moreover, the comparison with the analytical and numerical
simulation from Sec. 10.2 is the most informative compared to the
other experimental devices.

The noise power spectra of the six time traces are displayed in
Fig. 11.2. The light is measured with a heterodyne detector and
quadratures are obtained with suitable extraction of the orthogonal
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Figure 11.2 Power spectral density of 500 seconds long time traces. The target
mode (z-motion) at 76 kHz is indicated by the left most tick on the top axis. The
first spectator mode (x-motion) is at about 177 kHz, i.e. more then 100% apart
from the target mode. Therefore, it is the low frequency (noisy) features that are
spectrally closest to the target mode. The y-mode is at about 229 kHz. The dip
of the signal amplitude on the right of the z-peak (visible in the lower panel) is
ponderomotive squeezing of the light [Mag+22].

sine and cosine components via a Hilbert transform; see [WM09,
Ch. 4], [Hof15, App. B.1.1], [LP95], and our comments on heterodyne
detection in App. F.4. Therefore, the noise floor of both quadratures is
the same by construction. The shotnoise level is slightly below that of
the signal time traces in Fig. 11.2 (lower panel), hence it can be used
as unit calibration reference, as explained in Sec. H.6.

The witness plots for different evaluation configurations are sum-
marised in Fig. 11.3. Unfortunately, none of them shows entanglement.
The top left configuration (1-mode 1-sided evaluation) is the worst
and hardly comparable to the analytical and numerical simulations
results of the previous Section 10.2. 3 The top right and bottom left
panels show witness curves with a "trough" between 10 and 20 kHz
and a "bump" just below 100 kHz, similarly for the 2-mode 1&2-sided
evaluations of Fig. 10.10. The "trough+bump" shape is analogous to
the simulated results (albeit shifted towards larger witness values),
which we interpret as a strong sign that model and data processing
capture some of the relevant physics in the experimental data.

As mentioned in the previous section, using asymmetric bandwidths
for the temporal filters demodulating the first two modes lead to im-
proved results. With a suitable optimisation we obtained a witness

3. A similar behaviour can be reproduced with the analytical simulation by
setting the 3rd mechanical mode at several hundreds of hertz with relatively large
effective heating rate Γth,3. This simulates heuristically the low frequency noises in
the spectrum Fig. 11.2.
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Figure 11.3 Cross-validated witnesses of 1&2-mode 1&2-sided evaluations (rows
and columns resp.) of experimental data. The separability bound is at 2 with
entangled states below it. All plots have different y-axis but they have the same
x-axis. The black squares are the witnesses of the shotnoise data (not shown on
the top right figure for clarity). The amplitude of the trough+bump behaviour
here cannot be compared directly with the simulations in Figs. 10.9 and 10.10,
because the latter are not compensated for inefficiencies.

curve showing entanglement; see Fig. H.4 and the details in Sec. H.11.
But, as we explain in Sec. H.11, the optimisation led to unexpectedly
specialised and sensitive analysis settings; especially, changing them
in relatively small amount or attempting to retrieve some other (the-
oretically) expected behaviour, yielded no detectable entanglement.
Therefore we could not exclude that the optimisation introduced a
bias towards the wanted result (i.e. a form of over-fitting).
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C O N C L U S I O N

Our protocol for certifying stationary promising entanglement was
designed to be applicable to a wide range of currently existing devices
and for minimal experimental effort [Gut+20]. Practically, this is
reflected by the four different experimental datasets that we were
given the opportunity to study. None revealed entanglement, but the
experience gathered in the analyses led to a number of additional
insights on how entanglement is detected with this protocol.

Firstly, the theoretical model was extended to incorporate several
mechanical modes in order to describe the physics of real devices
more accurately. The comparison between analytical and numerical
simulations in Sec. 10.2, and their close similarity to the experimental
results, strongly indicates the success of this approach. Although the
analytical calculations in Ch. 9 are for EPR-variance, the derived suffi-
cient condition for entanglement detection applied well to necessary
and sufficient entanglement tests in the examples we studied. This
contrasts with the single-mechanical-mode scenario, where necessary
and sufficient tests seemingly always detect entanglement.

Specifically, we found that the necessary condition Eq. (9.35) and the
sufficient condition (in the presence of a spectator mode) Eqs. (9.50)
form an interval of possible bandwidths Γ for the early–late temporal
modes

γ1n1(C1 + 1) < Γ <
g1

g2

∆ω

3
√

3n2(C2 + 1)
. (12.1)

This expression emphasises the role of the occupation numbers of the
mechanical baths and makes their detrimental roles explicit; especially
in the (challenging) high temperature limit nj ≫ 1 we considered.

Strictly speaking, our spectator mode model applies to harmonic
mechanical modes interacting with the light via radiation pressure.
I conjecture that it is also an indicator for the detrimental effect on
entanglement detection from other processes with spectral features
in the detected temporal modes of light: e.g. low-frequency noise or
filters applied on the data.

In Section 9.4.4, we saw that the demodulation frequency of the
temporal modes must be chosen with great accuracy: 1 the discrepancy
δω= ω̄−ω1 must be no larger than ∼ Γ/

√
n1 Eq. (E.22). The scaling

with the bath temperature is severe and, in the (relevant) regime Γ <

1. Equivalently, the mechanical frequency must stable during the measurement
run.

135
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ω1, this corresponds to a precision at least of δω
ω1

< 1√
n1

. Combined
with the upper bound of the sufficient condition for entanglement in
Eq. (12.1) above, one obtains the stringent bound

δω <
g1

g2

∆ω

3
√

3n2n1(C2 + 1)
. (12.2)

In all five parameter regimes studied, the presence of a spectator
mode prevented entanglement detection; see Secs. 10.2, 10.1, and
App. G. However, this is only a partial explanation because the data
analysis can account for multiple mechanical modes, which is not de-
scribed by the model presented in this thesis. In all four experimental
datasets we analysed, the multi-mode evaluation performed better in
the sense that it systematically led to lower witness values; cf. Ch. 11. 2

The experience we gained in applying the protocol to analyse vari-
ous datasets led to an update of the original postprocessing procedure
proposed by Jason Hölscher-Obermaier in [HO17, Ch. 5]. The main
differences are: the use of a cross-validated witness method 3 to mitig-
ate bias of the entanglement test (cf. Secs. 11.1 and H.8); confidence
intervals estimated with the bootstrap method 4 (cf. Sec. H.9); conser-
vative units calibration (cf. Sec. H.6); and a modified compensation of
passive losses (cf. Secs. 11.1 and H.7). Mainly, these modifications aim
to mitigate the possibility for false positive entanglement detection –
and thus increase confidence/trust of a successful attempt.

We highlight that the difficulty in certifying Gaussian entangle-
ment is false-positive detection due to postprocessing steps meant
to improve the visibility of the correlations. It is a matter of confid-
ence/trust in the final result and our conservative choices are one
way of establishing trust. 5 We encountered the risk of false positive
detection from over-specialising the analysis procedure by rounds of
optimisations on a particular dataset and possibly introducing a bias
towards the wanted result; see Sec. H.11.

12.1 how to make it work

The refined analysis of the levitated particle in back-scattering con-
figuration showed very promising results, with the reserve that it
might have been an artefact due to over-fitting. Applying the ana-

2. With Klemens Winkler’s exact analytical model for cavityless levitation systems,
we confirmed that the multi-mode analysis indeed yields larger violation of the
separability bound (and larger logarithmic negativities); cf. Sec. 10.2. This is in
contrast to passive losses that can decrease the witness values of a separable state.

3. Used in Ramon Moghadas Nia in [MN17, Part V].
4. Used in Ramon Moghadas Nia in [MN17, Part V].
5. Sebastian Hofer often suggested that it would be more informative to devise an

adequate statistical estimate of the confidence intervals that accounts for calibration
and inefficiency compensation and quantifies the trustworthiness of results.
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lysis procedure that led to Fig. H.4 to a new dataset, with similar
mechanical frequency stability, can settle the question.

The insights on how to choose the parameters, provided by the
theoretical derivations, set two and a half constraints: they are the
necessary and sufficient boundaries in Eq. (12.1) above, and the half
constraint is the single mechanical mode sufficient condition Γ ≲ ω1

3√Q1
Eqs. (9.46) (it is only half a constraint, because necessary and sufficient
entanglement tests are not subject to it, as far as we can tell). 6

Equation (12.1) makes explicit that lower temperatures of the mech-
anical baths efficiently broaden the range of Γ that lead to entangle-
ment detection. Moreover, it relaxes the constraint on δω, and possibly
increase the separably violation associated to larger cooperativity (cf.
Sec. 9.4.1). Increasing the mechanical frequency of the target mode
has the same effect. Note that the derivations in this work hold in the
large thermal occupation regime Eq. (8.2), hence one must interpret
"reduction of the temperature" in the sense that n1, n2 remain large
(compared to 1).

One might insist on operating at the temperatures and mechanical
frequencies treated here. Then, the requirements for entanglement
detection are requirements of more control on the processes contribut-
ing to the detected signal, in the spectral vicinity of the sidebands of
the target mode. For example, mechanical modes can be engineered
spectrally farther apart; or the design leads to genuinely single-mode
structures (like drum-head capacitors [Teu+11; Kot+21]); or the devices
allow parameter tuning such that the spectator coupling g2 is strongly
attenuated (like levitated systems in coherent-scattering configuration
[Del19; GB+19]).

It is not excluded that different choices than those we motivated
in Sec. 8 lead to better protocols. For instance, for optimised separa-
tion Tsep = π/(2ω1) between the temporal modes, the (single-mode)
sufficient condition Eqs. (9.46) becomes significantly less stringent (cf.
Sec. 9.4.3). Red detuned driving enabled entanglement detection with
∆EPR in certain cases (cf. Sec. 10.1 and App. G). The multi-mode eval-
uations with more complex filtering temporal modes systematically
improved the results. Asymmetric decay rates for different demodula-
tions led to a potentially decisive enhancement as well. A systematic
study and/or optimisation 7 of the temporal profiles is an interesting
theoretical aspect that can help the identification of the quantum cor-
relations in the output light. In addition, it remains intriguing that, in

6. It is worth pointing out that entangled states not detected by ∆EPR typically
require short temporal filters unlikely to work out in practice due the spectral features
not included in the model. Moreover, entangled states detected by the EPR-variance
are robust against passive losses [Bar+11].

7. Preliminary expression of the mathematical problem as a quadratic optimisa-
tion problem with semi-definite constraints was formulated [Gut+20, App. B.2], but
no interesting result were found yet.
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the larger coherent coupling regime (large cooperativity), the violation
of the separability bound is limited to half its range; cf. Sec. 9.4.1.

One might also consider alternative approaches. While our protocol
is (fairly) agnostic of the details of the optomechanical device (cf.
Ch. 8), some experimental setups nowadays are very well character-
ised, to the point that an accurate state-space model and conditional
knowledge of the state (e.g. with a Kalman filter) can be used to estim-
ate the mechanical state accurately [HH15; Wie+15; Ros+19; Mag+21].
With such a technology, one can afford not to use the entanglement
verification theorem and test directly whether the joint optomechan-
ical state (estimated with the Kalman filter) is entangled. The best
temporal mode of light after interaction was derived in [MDC10]; see
also [Mia+10b; Mia+10a]. This method also suffers from trust issues
because the bi-partite state is reconstructed from measurements of a
single party – the light. An option is to use the data in a sequential
fashion, as we propose with the early–late temporal partition: first,
use light measurement data from t = 0 to T to define the light mode
(which interacted with the mechanics; see the time ordering logic from
[MDC10; Dir+24] ), and then use data from T to T + Tsep < 1/Γ tot

1
Eq. (9.47a) (assuming that this is enough) to estimate the mechanical
state at T + Tsep. Alternatively, the state of the oscillator at time T
can be "retrodicted" without (theoretical) constraints on the amount
of data [Lam18; LH24; Ros+19]. This defines the joint state of the
(early) temporal mode of light and the (conditional) mechanical state.
Sampling long enough allows to estimate the state (covariance matrix)
of the unconditional stationary optomechanical state, which can be
tested for entanglement. 8

12.2 outlook

Inspired by exquisite sensors such as LIGO, Virgo, KAGRA and
GEO600, one naturally wonders how the concepts presented in this
thesis apply as the mass of the mechanical oscillator increases to truly
macroscopic 9 scales. LIGO and Virgo operate now with squeezed
light [Yu+20; Aba+11; BHS19; Tse+19; Ace+19] and their description in
quantum terms is relevant. Consequently, entanglement between the
heavy mirrors and the light probing their positions must be encoded in
the measured information. The (quantum) position sensor paradigm
is how we introduced and motivated the search for optomechanical

8. In that case, the entanglement verification theorem is not necessary to conclude.
But the accuracy of the state-space model and the reconstructed mechanical state
must be demonstrated [Wie+15; Mag+21].

9. The interferometer with four suspended mirrors is equivalent to a single rubber-
cavity optomechanical device, as in Fig. 1.2, with an effective mechanical degree of
freedom weighing ≈ 40/4 = 10 kg; this is the so-called "scaling law" derived for LIGO
in [BC03].
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entanglement in Sec. 1.4. Our entanglement verification theorem
applies in exactly the same way in these cases. However, the open
system optomechanical model from Sec. 5.4, at the basis of our study,
is not accurate to describe a gravitational wave detector; typically
because several of the noises affecting the suspension mode are non-
Markovian and we did not model squeezed driving light.

In a recent collaboration with Su Direkci and Yanbei Chen from
Caltech, we studied entanglement in stationary optomechanical sys-
tems subject to Gaussian non-Markovian noises [Dir+24], building
on and generalising the work from [MDC10]. That work focused on
massive low-frequency oscillators that are typically affected by correl-
ated noises. With the mathematical and numerical tools developed,
we could ask whether the mechanical oscillator and the measured
light of a LIGO-like device are entangled (theoretically). The numer-
ical evaluation with parameters close to LIGO’s was too demanding
for our computational resources (the computer must distinguish de-
viations of order one or less between terms of order 1020). But for
seismic noise 12 orders of magnitude less than measured, we found
that the optomechanical state is separable. Because we do not expect
that it becomes entangled at higher levels of noise, we consider this
a strong evidence that Advanced LIGO’s optomechanical state was
separable. Our model did not include the current (frequency depend-
ent) squeezed input, for which it has been claimed that the massive
mechanical state shares "quantum correlations" with the light field
[Yu+20]. Our result is a first indication that these quantum correlations
might not be entanglement.

The questions around macroscopic quantum correlations in ex-
tremely precise (quantum) position sensors sparked a lot of thrilling
discussions among us – mainly because of their close connection to
this work on stationary optomechanical entanglement. We wondered
if one can formulate a quantitative relationship between (precise) meas-
urements and entanglement? Klemens Winkler was able to formulate
an answer to this question that will be presented elsewhere.

Another outstanding aspect, in my opinion, is the question of what
exactly would be entangled in a sensor like LIGO? On the one hand,
the mechanical oscillator in gravitational wave interferometers is the
effective result of the seismic noise isolation technique by (multi-stage)
suspension. The associated quantum mode (i.e. the single bosonic
system) defined by the resonance frequency (about 1 Hz in LIGO)
is strongly driven by seismic forces (and correspondingly damped
actively, so that its effective quality factor is relatively low). In the end,
it is the motion at frequencies between 40 Hz and 10 kHz that is unpre-
cedentedly quiet – but not the (bosonic) swinging once per second. On
the other hand, the technique in [Dir+24; MDC10] provides the explicit
temporal shape of the (unique) light mode which is entangled with
the mechanical oscillator. Such a temporal profile for LIGO-like para-
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meters is shown in fig. 9 of [Dir+24]. It is well fitted by an exponential
decaying hull at rate Γ ≈ 25 Hz for a demodulation at frequency
ω̄ ≈ 40 Hz – just like the early temporal mode of our analysis and the
functional form originally obtained in [MDC10]. The corresponding
Lorentzian is not centred on the mechanical sideband, but it is at the
lower boundary of the quiet region of the noise spectrum (compatible
with the findings in [MDC10, cf. p. 4] in the analogous free-mass limit).
To my understanding, this hints at the fact that modelling the mechan-
ical degree of freedom as a single-frequency mode might not be suited
in that case. In the free-mass limit, where the mechanical oscillation
at ωm is the second slowest process (after energy dissipation so that
the Q remains high), the mechanical state is described by an (almost)
freely propagating wave packet. In that picture, it corresponds to
excitations of a mechanical field, with time (or frequency) as labels for
different modes of that field – like electromagnetic radiation. I owe this
picture to Yanbei Chen and Roman Schnabel. Then one can ask which
temporal modes of the mechanical field (i.e. which superposition of
modes at different times) are entangled with the temporal mode of the
light after interaction. The covariance matrix of that state is infinite
(while it was "only half infinite" when treating the mechanical part
at a single specific time t = 0 in [Dir+24; MDC10]). This brings up
several complications, the most important being the lack of an easily
computable necessary and sufficient entanglement test. In addition
to trying with the usual tests (like ∆EPR or the PPT-criterion), one
could fix the light mode to be the one found when the mechanical
mode was treated as a single mode (as in [Dir+24, fig. 9]). In that
case, the situation is again a bi-partite Gaussian configuration with
one single-mode party for which the PPT-criterion is necessary and
sufficient. For numerical approaches with truncated temporal modes,
one can use the witness optimisation procedure (cf. Sec. 3.4.2 and
[HE06]) to test for entanglement, but probably not to discover which
modes are entangled.

Lastly, Klemens Hammerer once proposed to me the picture of
stationary optomechanical entanglement as a spatial region in front of
the mechanical oscillator (or pointing out of the cavity). This reflects
the fact that, in the stationary regime, entanglement between the
oscillator and the travelling light is continuously generated while the
mechanical state continuously decoheres. Therefore, the entangled
region is the path of the travelling light as long as it is entangled with
the mechanics; and it stops probably once the light has travelled a
distance ∼ c/Γ th corresponding to the mechanical decoherence time.
Varying the shape, duration, the separation Tsep, etc. of our temporal
modes construction, one can imagine mapping the features of this
entanglement region in front of the oscillator. With control over the
light in that region, one can further speculate the possibility to actuate,
prepare, and steer the mechanical (quantum) state.
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A
A Z O O O F S TAT E S

In this appendix, we summarize the properties of several harmonic
oscillator states relevant to this thesis: the ground state, Fock states, co-
herent states, squeezed states, thermal states, and two-mode squeezed
states. Our objectives are twofold. Firstly, we introduce and provide
context for several standard mathematical tools and concepts used
in the main text, such as the displacement operator and the thermal
distribution of bosonic excitations. Secondly, we discuss the properties
of these states to differentiate between quantum and classical charac-
teristics of a system or process. Loosely speaking, we argue that the
thermal states are a quantum model (or approximation) for typical
classical states, the coherent states are classical-almost-quantum states,
squeezed states are quantum-almost-classical, and the Fock states (of
at least one quanta) are typical quantum states. While the terminology
and classifications used here are non-standard, I find them helpful for
our analysis.

a.1 vacuum or ground state

The vacuum state, also interchangeably referred to as the ground
state, was introduced in our study of the quantum harmonic oscillator
in Sec. 2.5. It is the eigenstate of the number operator a†a with the
lowest eigenvalue 0, and is denoted |0⟩. This state is at the bottom of
the excitation ladder so that a |0⟩ = 0, defining the state of absolute
minimal energy of a harmonic mode – corresponding to the absence
of harmonic excitation quanta. The minimal energy of a harmonic
oscillator is not zero but half an excitation E0 =  hω/2 a consequence of
the fundamentally non-zero commutation relation between operators
Eq. (2.20). It is an element of the Fock basis of the Hilbert space of
states of harmonic oscillators hence it is a pure state.

The ground state is prepared by removing energy (i.e. cooling) until
it is not possible any more. Practically, the remaining motion of an
unexcited oscillator is due to thermal fluctuations and the vacuum
state is a thermal state at temperature exactly 0, as we will see when
discussing thermal states in Sec. A.6. The frequency of the oscillator
determines how it is affected by its environment’s temperature. High
frequency oscillators can be prepared in their ground state by therm-
alisation with an environment cold enough: for example a photonic
crystal at GHz frequency is close to its ground state in a dillusiton
refrigerator at several tens of mK as in [Rie+16], or THz vibrational
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modes of molecules at room temperature are also mostly in their
ground state [Roe+16], and similarly for the "free" electromagnetic
fields at optical frequencies (several hundreds of THz) in a room at
300K. Oscillators at lower frequencies must be cooled with some mech-
anism, for instance passively with a cavity [Teu+11] or by means of
measurements and feedback [Mag+21].

Preparing the ground state of a harmonic oscillator is an important
milestone in controlling the motion of massive objects. Because it is
a pure state, preparing such a state is the typical starting point of
many schemes involving genuinely quantum features [RI+11; RI11].
In this sense, the ground state of motion is a step towards the quantum
regime of mechanical systems.

Fig. A.1 Wigner function of
the ground state |0⟩. Radii
of ellipse indicate the normal
distribution’s std.

In Sec. 2.5, we saw that the modulus squared of the wavefunction of
dimensionless quadratures of a harmonic mode (massive mechanical
oscillator or light) is a normal probability distribution N(0, 1/2). The
std 1/2 is the uncertainty of the state in both quadratures and it
saturates Heisenberg uncertainty relation. In phase space (cf. Ch. 3)
the Wigner function representation Eq. (3.3) of the vacuum state is a
bi-variate normal distribution

W(r) = (π h)−1 e−(x2+p2)/2

=
e−rTσ−1r/2

2π h
√

det |σ|

∼ N(0, σ)

(A.1)

where rT = (x, p) is the 2-vector of (dimensionless) quadrature co-
ordinates in phase space and

σ = I2/2 =: σvac (A.2)

is the 2-by-2 covariance matrix, with I2 the identity matrix. This means
that |0⟩ is a Gaussian state (cf. Sec. 3.2). In Fig. A.1 we plotted the
Wigner function of a vacuum state in phase space.

a.2 fock states

Fock states, sometimes referred to as number states, are the ei-
genstates |n⟩ of the number operator a†a and are characterised by
eigenvalues n ∈ N. Notably, the vacuum state described in the pre-
vious section is a specific Fock state with eigenvalue zero. The Fock
states with n > 0 are systematically constructed from the vacuum by
successive application of the creation operator [CTDL05; Gri17]. These
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states are pure and form an orthonormal basis of the Hilbert space
called Fock space, ∀n,m ∈ N

⟨n|m⟩ = δnm (A.3)∑
n

|n⟩⟨n| = I. (A.4)

The Fock states are the energy eigenstates of a quantum harmonic
oscillator with spectrum En = (n + 1/2) hω, cf. Sec. 2.5. Hence,
the Hilbert space of the harmonic oscillator states is a Fock space.
Their explicit wavefunctions is essentially Hermit polynomials, see for
example [CTDL05, Ch. V.C] for a thorough presentation.

Fig. A.2 Wigner function of
|1⟩. The dashed circle is the
transition to positive values
and it is the same as the std
of the ground state (black
line circle in Fig. A.1)

In practice, Fock states are typically challenging to prepare. Single
excitations |1⟩ of an electromagnetic mode or a mechanical mode
have already been prepared, as for example in [Mar+18] to violate a
Bell-inequality with the state of two mechanical oscillators.

The Wigner function Eq. (3.3) of the Fock states can be expressed in
terms of Laguerre polynomials [Sch01, Ch. 4] – i.e. it is not Gaussian.
We plotted that of one quantum |1⟩ in Fig. A.2. An interesting char-
acteristic of Fock states |n > 0⟩ is that their Wigner functions take on
negative values, marking them as genuinely quantum and classifying
them as non-classical. This property is pivotal to our discussions on
Gaussian dynamics and maps in Sec. 3.3.

a.3 coherent states

The coherent states |α⟩ are the eigenstates of the annihilation oper-
ator a with eigenvalue α [GZ00]:

a |α⟩ = α |α⟩ . (A.5)

Because the annihilation operator is not Hermitian, α can be a complex
scalar.

In practice they are, for instance, the state of the light produced
by a laser. They also correspond to those states of a harmonic os-
cillator that remain unaffected by the (unitary) harmonic dynamics:
i.e. an oscillator starting in a state |α(t = 0)⟩ remains a coherent state
|α(t)⟩. Coherent states of mechanical motion are significantly more
challenging to achieve because of their coupling to some thermal
environment [Wol+22]. An operational way to produce a coherent
state of motion is to first prepare the ground state by cooling and
then displace the centre-of-mass in the harmonic, making sure not
to disturb the mechanical state too much. For instance, this could be
conveniently done in a levitated setup where one would displace the
centre of the trapping tweezer forming the harmonic trap.
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As just mentioned, a coherent state is a displaced vacuum state. Math-
ematically, one defines the unitary displacement operator

D(α) := eαa†−α∗a (A.6)

with α ∈ C and apply it to the ground state

|α⟩ := D(α) |0⟩ . (A.7)

Here, the ground state is displaced by α. In particular, α = 0 is a valid
choice of displacement and the (undisplaced) vacuum is a coherent
state as well. Coherent states are pure states. They are Gaussian too
because the displacement unitary is a symplectic transformation (with
linear Hermitian generator, see Sec. 3.3).

To make sense of the "displacement" terminology, it is useful to
picture the state in phase space. One finds that the first and second
moments in terms of (dimensionless) quadrature coordinates are 1

⟨q⟩ =
√

2Re[α] ; var[q] = 1/2 (A.8a)

⟨p⟩ =
√

2Im[α] ; var[p] = 1/2. (A.8b)

Compare to the moments of the Wigner function of the vacuum |0⟩ in
Eq. (A.1), we see that the second moments are unchanged and only
the first moments were shifted – a displaced indeed – by α: in a phase
space, the real part of α is the abscissa and the imaginary part is the
ordinate. The bi-variate normal Wigner function of a coherent state is
depicted in Fig. A.3.

Fig. A.3 Wigner function of
coherent |α⟩, where α =

2 eiπ/5 is the displacement;
see also Fig. 3.1. Radii of
ellipse indicate the normal
distribution’s std; they are
the same as for the vacuum
state in Fig. A.1, but the
axes here are different.

Coherent states and vacuum state have the same covariances, there-
fore the same uncertainty properties, which are of fundamental quan-
tum nature. They both saturate Heisenberg uncertainty in a symmetric
fashion, hence coherent states are probes whoes accuracy is limited by
quantum noise. I find it rather fascinating that this is the case of laser
light at room temperature that is (to a very good approximation) in
an almost pure coherent state. This particular property of optical light
makes it a measurement probe of choice.

As discussed in Chapter 4, the "quantum features" (like entangle-
ment) of Gaussian states are entirely encoded in the states’ second
moments. Therefore, displacements are deemed irrelevant, in partic-
ular in our study of entanglement. However, displacements play an
important role in the background of our model because they allow to
focus only on the states’ covariances and not on the first moments; this
is in essence the role of the displaced frame introduced in Sec. 5.3 where
we assume tacit knowledge of the evolution of the first moments,
allowing to displace the frame so that all the quadratures’ means are
zero at all times. All the derivations in this thesis are carried out
within this frame. See [Hof15; AKM14; GB+19] for explicit details.

1. Using that ⟨q⟩ := ⟨α|a+ a† |α⟩ /
√

2 = (α+α∗)/
√

2.
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The decomposition of a coherent state in the Fock basis is

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩ . (A.9)

This means that coherent states are a superposition of different ener-
gies with an associated uncertainty (in energy) of genuine quantum
nature. The vacuum, on the other hand, is an eigenstate of energy, but
both have the same uncertainty in their measurable quadratures, as we
noted above. The probability distribution of Fock state – of energies –
is Poissonian

p(n) = |⟨n|α⟩|2 = e−|α|2 |α|
2n

n!
(A.10)

with equal mean and variance |α|2. Physically, the mean Fock number
relates to the mean energy of the state so that the intensity of a coherent
state of light is proportional to |α|2 – in dimensionless units, this
corresponds to the average number of photons in the state. Contrary
to the Fock states, the ensembles of all coherent states {|α⟩ : α ∈ C}
are not a basis of the Hilbert space [GZ00]: they do span it hence they
resolve the identity∫

C
d2α |α⟩⟨α| = πI. (A.11)

but their ensemble is over-complete so that they cannot be orthonormal

⟨α|β⟩ = exp

(
−
|α|2 + |β|2 − 2α∗β)

2

)
. (A.12)

a.4 squeezed states

They are the generalised pure Gaussian states. Their distinguishing
feature is that they saturate Heisenberg uncertainty bound asymmet-
rically, hence being less uncertain than the coherent states of Sec. A.3
along a particular observable, linear combination of quadratures. See
Fig. A.4 for a representation of the Wigner function of such a squeezed
state. It has an elliptical shape with its main axis rotated compared to
the quadratures’ axes; the direction of the smallest radius of the ellipse
is the squeezing axis. Because it is a pure state, the indefiniteness of
the state is of quantum nature – i.e. it corresponds to quantum fluc-
tuations. An observable along the squeezed axis thus has improved
(quantum) uncertainty. In this sense, squeezed states are considered
genuine quantum states [Frö+18; WM06]. Along the anti-squeezed
axis the uncertainty is larger as prescribed by Heisenberg uncertainty
bound Eq. (2.9). We stress that the squeezing feature is the reduction
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of uncertainty (or inherent noise upon measurements) below the refer-
ence set by the vacuum or the coherent states. This is different from
squashing (this is jargon), where the (classical/technical) indefiniteness
of the state in both quadratures is asymmetric, but not below the
reference variance set by the vacuum state; we discuss squashed state
along with thermal states below in Sec. A.6.

Squeezed states of light are more challenging to produce than
coherent states. Commonly, they are generated via down-conversion
of a pump laser that has the effect of converting single photons at
the frequency of the pump, into two photons at half the frequency of
the pump, in a coherent way [Sch17]. This phenomenon happens as
second order (non-linear) effects in the transmission/susceptibility of
certain crystals for instance. This is in principle the same mechanism as
for producing pairs of single photons in spontaneous down-conversion
(SPDC) sources; see [Kwi+95] for example. As mentioned in the
introduction, squeezed light (with squeezing depending on frequency)
is currently used in the LIGO/VIGRO gravitational-wave detectors to
improve their sensitivity [Yu+20; Aba+11; BHS19; Tse+19; Ace+19]. To
my knowledge, squeezing of massive mechanical oscillators is still an
open challenge actively pursued in the optomechanical community.

Fig. A.4 Wigner function
of squeezed vacuum state
|ξ⟩, where ξ = 0.5 eiπ/2

is the squeezing parameter;
see also Fig. 3.1. The solid
ellipse indicates the std of
the squeezed state and the
dashed one is that of the
vacuum for comparison.

Define the squeezing operator

S(ξ) := e
ξ∗
2 a2−ξ

2 a
†2

(A.13)

where ξ = reiθ, r ⩾ 0, is called the squeezing parameter [AI07; CS85;
SC85]. In full generality, a squeezed state can be displaced [cf.
Eq. (A.6)] and it is obtained from the vacuum as [GZ00; VW94]

|α, ξ⟩ := D(α)S(ξ) |0⟩ . (A.14)

Because both the squeezing and the displacement operators are
at most second order in the operators, they preserve the Gaussian
character of the ground state so that |α, ξ⟩ is a Gaussian state, see
Sections 3.3. Let us first inspect the effect of the squeezing alone: it
leaves the first moment unchanged 2 and the second moments become
(for a squeezing angle θ = 0)

σsq(ξ = r) =
1
2

(
e−2r 0

0 e2r

)
. (A.15)

2. This is not trivial to show, afaict. One way is to apply the squeezing to
the ladder operators and find that S†(ξ)aS(ξ) = acosh(r) + a†sinh(r) eiθ (typically
applying Baker–Campbell–Hausdorff formula) and similarly, the squeezed creation
operators is a linear combination of a and itself, see for example [BL05, Sec. II.E] or
[Tru85; SC85]. This implies that any linear combination of the quadratures will be a
linear combination of ladder operators whose expectation value for the ground state
remains zero – this is not case for another state in general.
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Combined with the displacements α = (Re[α] , Im[α])T , one deduces
that the Wigner function representation of a (single-mode) squeezed
state is a bi-variate Gaussian

W ∼ N(
√

2α, σsq(ξ)) (A.16)

where for a complex ξ, σsq(ξ) is any covariance matrix that saturates
Heisenberg bound on covariance matrices Eq. (3.9).

For completeness, we provide the (undisplaced) squeezed states
expressed in the Fock basis 3 [Wee+12]

|r⟩ = S(r) |0⟩ = cosh−1/2(r)

∞∑
n=0

tanhn(r)

2n

√
(2n)!
n!

|2n⟩ . (A.17)

As the coherent state Eq. (A.9), this is a superposition of energy
number states, but the quanta come in doublets – this is the essence
of the quantum correlations between both quadratures that manifest
as squeezing. Note that the squeezing operation manifestly "pumped"
energy into the state because the vacuum state was unpopulated while
the population of this squeezed state is ⟨r|a†a |r⟩ = sinh2(r).

a.5 two-mode squeezed states

When two (or more) harmonic modes are considered, the physics
of squeezing becomes richer; in particular certain states are entangled.
Consider a composite system with two modes, labelled 1 and 2, and
with their joint states in the tensor product Hilbert space H1 ⊗H2.
The ladder operators of each mode are aj and a†j , j = 1, 2. Then, the
two-mode squeezing operator is [AI07]

S12(ξ) := eξ
∗a1a2−ξa

†
1a

†
2 (A.18)

with ξ ∈ C. It is a generalisation of the single-mode squeezer Eq. (A.13)
above. It squeezes both modes together simultaneously and should be
distinguished from the two squeezed-modes operation

S1(ξ1)⊗ S2(ξ2) = Πj=1,2exp
(
ξ∗ja

2
j − ξja

†
j

2)
(A.19)

that squeezes both modes independently. A general two-mode squeezed
state is given by the operation of S12 on the vacuum, followed by
arbitrary displacements [cf. Eq. (A.6)] of both modes: we write

|TMS⟩ ≡ |α1, α2, ξ⟩ := D(α1)D(α2)S12(ξ) |0⟩ (A.20)

3. First, express the squeezing operator S(ξ) from Eq. (A.13) in a normally ordered
product of operators, or find it in the literature [SC85; Tru85]; then apply it to the
vacuum state.
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where |0⟩ ≡ |0⟩1 ⊗ |0⟩2 is the joint ground state of the composite
system, and we omitted the tensor product between the displacement
operators.

Similarly to the considerations made for the (single-mode) squeezed
state in Sec. A.4 above, |TMS⟩ is Gaussian and the operation S12 alone
leaves the state’s four first moments unchanged. The second moments
of both systems become correlated. This is made explicit by the non-
zero terms in the non-diagonal blocks of the covariance matrix (here
for a real squeezing parameter ξ = r ⩾ 0) [AI07]

σTMS(r) =
1
2


cosh(2r) 0 −sinh(2r) 0

0 cosh(2r) 0 sinh(2r)

−sinh(2r) 0 cosh(2r) 0

0 sinh(2r) 0 cosh(2r)

 (A.21)

where the quadrature coordinates are arranged like r = (q1, p1, q2,

p2)
T . While the two-mode squeezed states are special because they

are entangled (as we will see), there are other separable Gaussian
states that share correlations among their modes and have non-zero
non-diagonal blocks.

The associated Wigner function takes values in R4 and it is a four-
variate normal distribution

W ∼ N(
√

2(α1,α2), σTMS(ξ)). (A.22)

In Fig. A.5 we plotted a cut of the Wigner function along the plane

Fig. A.5 Two-dimensional
histogram sampled from
bi-variate normal distribu-
tion with covariances σTMS
Eq. (A.21) with r = 1;
shown here is a slice in the
EPR-basis. In black continu-
ous ellipse is the std of the
distribution in that slice and
the dashed ellipse is the std
from a sampling of the cor-
responding 2-mode vacuum.

(q1 + q2, p1 − p2)/
√

2. Interestingly, the spread of the distribution –
that relates to the uncertainty of the state – is below that of the vacuum
state in all directions of that plane. This is a manifestation of a "strong"
correlation between the modes. One can pictorially deduce that it
is entanglement with the EPR-variance entanglement test Eq. (3.13)
stating that the sum of the variances along the vertical and horizontal
axes must be less than that for the vacuum state for entanglement.

Two-mode squeezed states are entangled in general [AI07]. The ne-
cessary and sufficient logarithmic negativity (introduced in Sec. 3.4.4)
applied to σTMS(r) gives r, so that the state is entangled for any
r > 0 and it does not change under local symplectic transformations. 4

Therefore, as far as I can tell, squeezing along the linearly independent
combinations of quadratures is the nature of Gaussian entanglement:
Gaussian entanglement is two-mode squeezing. Gaussian entanglement is
at the core of the work presented in this document because we attempt
to demonstrate that it describes the state of a mechanical oscillator
and the light measuring it in optomechanical devices.

4. Note that, in the bi-partite entanglement configuration, if both parties have
more than one mode, then the logarithmic negativity is not necessary and sufficient
any more [AI07].
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To better grasp the kind of quantum correlation encoded in a two-
mode squeezed state, we express it in the Fock basis 5 [Wee+12] (here
undisplaced and with real squeezing parameter ξ = r > 0)

|TMS⟩ ≡ |0, 0, r⟩ = cosh−1/2(r)

∞∑
n=0

(−tanh(r))n |n,n⟩ . (A.23)

This state always has the same number of excitations in both modes: i.e.
if one observes m excitations in one of the modes, then, with certainty,
the other mode will be in a state of m excitations. The distribution
of the excitations observed in the first place remains indefinite in the
sense that it is a quantum superposition of number states; but once
the energy of a mode has been measured no uncertainty remains
regarding the energy state of the second mode – this is the typical
symptom of the "action at a distance" enabled by entanglement. In
fact, in the limit where r is small, the sum can be truncated after its
first term and one obtains the (unnormalised) state of an SPDC source
of entangled photon pairs [GAC10].

a.6 thermal states

It is useful to introduce the state of a harmonic oscillator mode that
has some "temperature". In (classical) thermodynamics, temperature
is (or relates to) a Bose-Einstein distribution of energies, where higher
temperatures correspond to larger energies and broader distributions.
In practice, an unprepared oscillator in contact with an unknown
environment is in a thermal state. This is because one makes min-
imal assumptions about the environment and assumes it is itself in
a thermal state at macroscopic/thermodynamical temperature T and
the oscillator thermalised with it.

Quantum mechanically, we encode the Bose-Einstein distribution
of energies in the (non-fundamental) indeterminacy of the state –
reproducing the effects of uncontrollable and unknowable fluctuations
of thermal origin. We write

ρth :=
∞∑
n

pn |n⟩⟨n| (A.24)

where the (Bose-Einstein) probabilities are 6

pn :=
e−Enβ

Z
=

1 − e−β hω

e−β hω/2 e−(n+1/2) hωβ (A.25)

5. As in the single-mode squeezing case, use a normally ordered expression of
S12(ξ) (given explicitly in [SC85] for instance) and apply it to the vacuum state.

6. We used the spectrum of a quantum harmonic oscillator En =  hω(n+ 1/2)
Eq. (2.21) and Z is the partition function of the harmonic Hamiltonian HHO Eq. (2.20),
Z := Tr

[
e−βHHO

]
= e−β hω/2

1−e−β hω .
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β := (kBT)
−1, with kB Boltzmann’s constant and T the state’s temper-

ature.

The mean energy of a thermal state is Eth = ⟨HHO⟩ =  hω(nth + 1/2),
where nth is the mean number of excitations in the state (or mean
occupation number of the mode) 7

nth := ⟨n⟩ = Tr
[
a†aρth

]
=

∞∑
n

pnn

=
1

e hωβ − 1
. (A.26)

It relates directly to the temperature β and one often speaks of nth

as the "temperature" of ρth. In the high temperature limit where
β−1 = kBT ≫  hω then Eq. (A.26) is well approximated by

nth ≈ kBT
 hω

≫ 1. (A.27)

In that limit, Eth ≈ kBT +  hω/2 ≈ kBT which is the result of the
equi-partition theorem from (classical) statistical physics. In the low
temperature limit, nth → 0 and the mean energy tends to the ground
state energy of the oscillatory mode Eth → E0 =  hω/2. Also, in the
limit T → 0, the thermal state becomes the (pure) vacuum state |0⟩⟨0|.

As discussed in Sec. A.1, the vacuum state is the state of lowest
energy and it is prepared by cooling the mode initially in a thermal
state at finite temperature into the ground state at ideally zero tem-
perature T → 0. In practice, one never reaches absolute zero and
nth > 0 and experimental realisations of a ground state of mechanical
motion are characterised by nth < 1 [Del+20b; Mag+21] – some have
occupations much closer from 0 than 1 as in [Mee+15; Rie+16] for
instance. Consider an oscillator at relatively high frequency, say ω is
in the GHz regime. Then use Eq. (A.27) to get quickly an estimate
of the temperatures at which it will be in its ground state: one finds
nth < 1 when T < 0.1K. These are temperatures accessible in dilution
refrigerators, hence, a GHz oscillator can be prepared in its ground
state by thermalising it with the cold finger of a dilution refrigerator,
as in [Mee+15; Rie+16]. Similarly, for a mode of light at optical fre-
quencies, i.e. some hundreds of THz, we find that it is populated by
the black-body radiation of objects at room temperature (≈ 300K) to
about nth ≈ 0.1 photons. Hence, the modes of the electromagnetic
field in a laboratory – everywhere around an experiment – are almost
the vacuum state. This is a point we will use in our model of the
bath for the cavity mode in our model of an optomechanical device in
Ch. 5.

7. Use that
∑∞

n=0 nr
n = r

∑∞
n=0

d
dr r

n = r d
dr (1 − r)−1 = r(1 − r)−2 for |r| < 1.
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Thermal states are Gaussian 8 [ARL14]. The first moment of its
dimensionless quadrature q is

⟨q⟩ = Tr

[∑
n

(a+ a†)pn/
√

2 |n⟩⟨n|

]
= 0. (A.28)

Similarly, one finds that the expectation values of p and of the ladder
operators are zero as well. The second moment of q is

〈
q2〉 = 1

2

∑
n

pn

(
2Tr
[
a†a |n⟩⟨n|

]
+ 1
)
= nth +

1
2

(A.29)

where we used the definition of the average occupation number nth

Eq. (A.26) in the last step. The variance of p is the same. The Wigner
function of a thermal state is thus a bi-variate normal distribution

W ∼ N(0, σth) (A.30)

with a covariance matrix σth := (nth + 1/2)I = (2nth + 1)σvac. Fig-
ure A.6 shows a thermal state in phase space. In terms of a fluctuating

Fig. A.6 Wigner function of
thermal state |nth⟩. The
solid ellipse is for the std of
the thermal state and the
dashed one is the std of the
vacuum for comparison.

process, it means that a thermal oscillator moves randomly around its
equilibrium position (the origin of phase space is also the minimum
of the harmonic potential). The amplitude of the random motion is
scaled by the (co)-variances that relate to the state’s temperature via
the mean excitation number nth Eq. (A.26).

In full generality, a thermal state could be displaced and squeezed
as ρGauss = D(α)S(ξ)ρthS(ξ)

†D(α)†, which defines the most general
Gaussian state. Placed in a harmonic potential, the displacement
would lead to the thermal state rotating around phase space like a
harmonic oscillator and corresponds to a quantum model of a classical
oscillator. Because thermal states do not saturate Heisenberg uncer-
tainty bound, squeezing will not necessarily lead to uncertainty below
that of a coherent state; to distinguish the cases where the squeezing
leads to a quantum feature of the state (in the sense discussed in
Sec. A.4) one speaks of squashed states when their uncertainty is not
below that of a coherent state along any direction in phase space.

8. I know of no efficient way to prove it and would resort to compute its Wigner
function Eq. (3.3) (or its characteristic function [ARL14]) and show that it is Gaussian.



B
B E L L L O C A L - R E A L I S M A N D G AU S S I A N
E N TA N G L E M E N T

Let us start with four statements:

1. All pure entangled states are non-local-realistic, i.e. they can be
used to violate a Bell inequality [Gis91]. In particular, pure two-
mode squeezed states discussed in this work are non-local.

2. Gaussian entangled states (e.g. two-mode squeezed states) and
measurements of their quadratures (or linear combinations thereof)
cannot violate a Bell inequality; see for example [PJR09].

3. Non-locality and entanglement are different resources [Bru+14].
4. There exist entangled mixed states that cannot violate a Bell in-

equality [Wer89].

They are all true but they leave a certain tension if left uncommented;
specifically, the tension is due to point 2. We mentioned point 4. for
completeness and to clarify that, in the remaining of this chapter, we
focus on pure states (although the whole discussion holds for mixed
states as well). Point 3. is certainly the most general resolution of the
tension but it left me unsatisfied, which is why I wrote this appendix.
In the end, we will see that 2. restricts the measurements, while
1. doesn’t. The lesson I learned here is that, from the perspective
of an operator, the description of a quantum system requires the
specification of its state and the measurements by which it can be
known.

First, I found it helpful to refresh Bell’s theorem, e.g. from [Bru+14,
Sec. 1]. Local-realism constraints joint probability distributions of
measurement outcomes: let p(a, b|x, y) be the joint probability of
bounded outcomes a and b, given the measurement settings x and y.
Then, a local-realist theory (or a hidden variable theory) states that
there must exist past factors, summarised in a variable λ, such that

p(a, b|x, y, λ) = p(a|x, λ)p(b|y, λ). (B.1)

In general, p(a, b|x, y) is not equal to p(a|x)p(b|y) because there can be
correlations between the systems being measured. But in local-realistic
models, it is always possible to find out the origin of these correlations
and encode it in the variable λ. Then, given the knowledge of λ,
the probability factorises as if the measurements were independent.
Physically, the factorisability Eq. (B.1) is the expression that distant
objects, possibly sharing a correlation, do not influence measurement
results on each object separately. Lastly, λ might be imperfectly known
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and described by a probability distribution u(λ). Equation (B.1) is
thus re-expressed as

p(a, b|x, y) =

∫
dλp(a|x, λ)p(b|y, λ)u(λ) (B.2)

and is a consequence of local-realistic assumptions 1 on joint probab-
ility distributions of measurements [Bel04; Bru+14]. It follows that
correlators of an observables Ax and By are of the form

⟨AxBy⟩ =
∫

dadbabp(a, b|x, y)

=

∫
dadbdλap(a|x, λ)bp(b|y, λ)u(λ).

(B.3)

a and b denote particular measurement outcome of Ax and By, re-
spectively. The indices x and y label the observables.

As explained in [BW98; PEW05], separated measurements of observ-
ables X and/or Y on both parts of the system 2 can be expressed as the
Wigner representation (cf. Sec. 3.1) of the operators: the probability
distribution measured on the first party is given by the Wigner repres-
entation Eq. (3.3) of the observable being measured, call it Wx(q1, p1),
with x = X, Y. For the second party, we haveWy(q2, p2), with y = X, Y.
In the Wigner representation of phase space, the expectation value of
some operator K, given a state ρ, is Eq. (3.6)

⟨K⟩ =
∫

dqdpWK(q, p)Wρ(q, p) (B.4)

where Wρ is the state’s Wigner function Eq. (3.3). For the correlators
entering a Bell inequality

⟨Y ⊗X⟩ =
∫

dq1 dp1 dq2 dp1WY(q1, p1)WX(q2, p2)

×Wρ(q1, p1, q2, p2) (B.5)

which relates to Eq. (B.3) with the measurement settings being x = Y
and y = X. If Wρ is a bona fide probability distribution, it can
be identified with u(λ) – so that the phase space coordinates qj, pj,
j = 1, 2 are the hidden variables. If WY(q1, p1) can be identified
with

∫
daap(a|x, λ) (similarly with WX(q2, p2)) then Eq. (B.5) is an

expectation value of a local hidden-variable model (the model being
provided by the Wigner representation). In that case, Bell’s theorem
guaranties that it will satisfy Bell inequalities.

1. Reality is assumed to be (i) independent of observation, (ii) interactions and
information is local and propagate from adjacent systems to the next (at most at the
speed of light), and (iii) true randomness exists [Bru+14; Bel04].

2. Formally, x, y = X, Y are labels, such that when x = X = y then Ax = AX =

By = BX = X are the observables; and similarly for x = Y = y.
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There are thus two ways in which Eq. (B.5) is not equivalent to
Eq. (B.3) so that Bell’s theorem does not apply (and a Bell inequal-
ity can be violated): first, if the state’s Wigner function is negat-
ive (which is the case for any pure non-Gaussian states [Hud74]);
second, if the Wigner function of the observables cannot be written as∫

daap(a|x, λ), with the values of a bounded. I will not try to specify
the latter further because I haven’t understood it well enough yet;
but see [BW98] and [PEW05] where they give (bounded) dichotomic
observables, which Wigner representations are unbounded, and show
that states with positive Wigner functions can violate a Bell inequality
with these observables. 3

Let us now get a little more concrete and consider continuous
variables states of position and momentum of two objects, as we did
in Chs. 2 and 3. The observables are the objects’ quadratures position
Q and momentum P, corresponding to the settings x, y = Q,P. Their
Wigner representations are WQ(q, p) = q and WP(q, p) = p, where
the rhs are real number variable entering Eq. (B.5) or Eq. (3.6); cf.
Sec. 3.1. Choose p(a|x, λ = (q, p)) = q so that

∫1
−1 daap(a|x, λ) = q =

WQ(q, p) (and similarly for WP). Assume that the bi-partite (joint)
state of the objects is a two-mode-squeezed state ρTMS with Gaussian
Wigner function WTMS (see Sec. A.5). Then any correlators of Q and P
measured locally on both parties are of the form Eq. (B.5) and no Bell
inequality can be violated.

An analogue argument is to acknowledge that Gaussian measure-
ments (general-dyne) have Gaussian Wigner representation [GLS16],
hence WX and WY Eq. (B.5) are (bounded) normal distributions, they
form a local hidden variable model, and non-local-realism cannot be
demonstrated.

A final historical note, in [Bel04, Ch. 21] J. Bell demonstrated that
the original (not normalisable infinitely squeezed) EPR-state, would
not violate a Bell test if one measured the sign of the position operator
[BW98] – which is a special case of our discussion of the two-mode
squeezed state with Gaussian measurements. In [BW98] and [PEW05]
they propose non-Gaussian continuous-variable measurements that
would allow to violate a Bell inequality with Gaussian entangled states.
I think it is quite fun!

3. Interestingly, the examples in both references obtain Dirac-delta-like Wigner
representations of the observables, which are, in principle, bona fide probability
distributions. The point that voids Bell theorem is the unbounded nature for the
Dirac-delta.



C
S O L U T I O N O F C AV I T Y O P T O M E C H A N I C A L
D Y N A M I C S I N F O U R I E R S PA C E

Start from the model and notations of Sec. 5.4. The QLE in matrix
form are Eq. (5.19)

ṙ(t) =Mr(t) +Nn(t) (C.1)

with state vector

r :=(x, y, q1, p1, q2, p2)
T

=(x, y, qj, pj)
T

(C.2)

and input vector of noises

n := (xin, yin, 0, ξj)T . (C.3)

c.1 quadrature and ladder representations change

The QLE above are given in terms of quadrature operators, but they
could equally well be presented in terms of ladder operators – or any
mixture of both. We introduce the 2-vector rq = (q, p)T , where the
superscript q indicates that it is a vector of quadratures – i.e. a state
vector in the quadrature representation. Analogously, we define the
2-vector rl = (a, a†)T in the ladder representation. They are related
via a linear transformation [cf. Eqs. (2.18)]

rl = Rrq, where R =
1√
2

(
1 i

1 −i

)
. (C.4)

Note that R is unitary R−1 = R†. We generalise the transformation R
to apply on n modes: Rn := R⊕n. We obtain the QLE from Eq. (C.1),
in terms of ladder operators as

ṙl = R3ṙ
q

= R3M
qR−1

3 R3r
q + R3N

qR−1
3 R3n

q

=Mlrl +Nlnl. (C.5)

The system matrix became M = Mq → R3M
qR−1

3 = Ml and for the
input matrix N = Nq → R3N

qR−1
3 = Nl; they are given explicitly, in

ladder representation, in Eqs. (C.13) and (C.14), respectively. Similarly
the input vector became

nl = (cin, c
†
in, i ξj/

√
2,−i ξj/

√
2)T . (C.6)

156



C.1 solving the qle 157

(Notice how each entry is non-Hermitian and how the even entries
are the adjoint of the odd entry before.)

Because the QLE have the same form in both representations, we
will not indicate the superscripts l and q in the following and make
sure the context makes clear which representation is used – or if the
choice or representation is irrelevant because the presented relations
are valid in either.

c.2 solving the qle in fourier space

The QLE in time are ODE with formal solution [Gen+08]

r(t) = eMtr(t0) +

∫t
t0

dt ′eMsn(t− t ′). (C.7)

It has a stable steady-state when the eigenvalues of the system matrix
M all have negative real parts. The explicit mathematical expression of
this criterion in terms of system parameters can be found in [Gen+08,
eqs. (10), Sec. II.A] or [Hof15]. When the drive is resonant with the
cavity ∆ = 0 (which is the relevant regime for our study), the dynamics
are stable without conditions on the other parameters.

In the steady-state, we can Fourier transform the QLE and cast
them into a linear system of equations that can be inverted. We set
our convention for the Fourier transform, Eqs. (C.8) below, and how
it behaves with respect to Hermitian conjugation. For a function or
operator g(t), we define its Fourier transform as

F[g(t)]ω :=
∫∞
−∞

dt√
2π

eiωtg(t) = g(ω) (C.8a)

F−1[g(ω)]t :=
∫∞
−∞

dt√
2π

e−iωtg(ω) = g(t). (C.8b)

We mark Fourier transformed functions by their argument t or ω;
when we omit the argument, the context will tell in which space the
function is meant. The convention for the Hermitian conjugation □†

of a Fourier transformed operator g(ω) is

g†(ω) := g(ω)† = F[g(t)]†ω = F[g†(t)]−ω. (C.8c)

This choice over the other one g†(ω) = F[g†(t)]ω is arbitrary but it
is important to stick to it strictly. Independently of the conventions,
Hermitian operators in real space are not Hermitian in frequency
space: for instance, position q is such that q(ω)† = F[q†(t)]−ω =

q(−ω). This can lead to pitfalls when working with non-Hermitian
operators in real space: indeed, the Fourier transformed state vector
of quadrature is (rather intuitive)

rq(ω) = F[rq(t)]ω =
(
x(ω), y(ω), qj(ω), pj(ω)

)T
(C.8d)
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but in the ladder operator representation we get

rl(ω) = F[rl(t)]ω =
(
c(ω), c†(−ω), bj(ω), b†j(−ω)

)T
(C.8e)

with a rather non-intuitive sign change. Hence, our convention
Eq. (C.8c) implies 1 a change of sign in the creation operators – and
we see Eq. (C.8e) as part of the Fourier transformation convention
Eqs. (C.8). Similarly, we obtain the input (noise) vector (in the ladder
representation) in frequency space

n(ω) =
(
cin(ω), c†in(−ω), i ξj(ω)/

√
2,−i ξ†j(−ω)/

√
2
)T

. (C.8f)

(Observe how the thermal noise operator ξ is not Hermitian any more
in frequency space.)

We find that the Fourier transformed QLE in matrix form

F [ṙ]ω = −iωIr(ω) =Mr(ω) +Nn(ω) (C.9)

assuming that the state vector vanishes at high frequencies. The
explicit solution in Fourier space is then

r(ω) = −(M+ iωI)−1Nn(ω). (C.10)

This result holds in both representations with a suitable transformation
of the matrices (cf. App. C.1) and using the sign convention for the
transformed operators in ladder representation, cf. Eqs. (C.8).

c.3 output operators

The input–output relations were presented in Sec. 4.3. They have
the same form for both quadrature and ladder operators, and in time
and frequency spaces. From Eqs. (4.12) we get

rout = Noutr+Nfdtrn. (C.11)

The output matrix Nout and thefeed-through matrix Nfdtr depend on
the choice of representation, like the system- and input- matrices M
and N above. The output 4-vector rout encodes the state of the out-
put electromagnetic field propagating away from the cavity and the
excitation of the mechanical substrate "propagating away" from the
mechanical oscillator. Only the first two entries of rout are accessible
(measurable) and we call them rc,out. Output- and feedthrough- matri-
ces are thus 2-by-6 rectangular matrices given Eqs. (C.16) and (C.17).
The light field output operators solution of our model are

rout(ω) =
[
(−1)Nout(M+ iωI)−1Nin +Nfdtr

]
n(ω). (C.12)

1. Strictly speaking, it is not obligatory to do it this way and one could decide
that all the operators in r(ω) have the same argument. This would require dealing
with each term individually when performing the Fourier transformation (according
to our convention for the Hermitian conjugation) and changing between ladder and
quadrature representations. The advantage here is that we can keep the compact
matrix notation all the way.
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c.4 state-space model in ladder operator representa-
tion

The system and input matrices of the state space model Eqs. (5.14)
[Eq. (5.19) in matrix form] for two mechanical modes, in the ladder
operator representation, are given by

Ml = i



∆

(
1 0

0 −1

)
g1

(
−1 −1

1 1

)
g2

(
−1 −1

1 1

)

g1

(
−1 −1

1 1

)
ω1

(
−1 0

0 1

)
O2

g2

(
−1 −1

1 1

)
O2 ω2

(
−1 0

0 1

)
O2



−
1
2



κI2 O2 O2

O2 γ1

(
1 −1

−1 1

)
O2

O2 O2 γ2

(
1 −1

−1 1

)


(C.13)

Nl =



√
κI2 O2 O2

O2

√
γ1
2

(
1 −1

−1 1

)
O2

O2 O2

√
γ2
2

(
1 −1

−1 1

)


(C.14)

where O2 is the 2-by-2 null matrix and I2 is the 2-by-2 identity matrix.
The corresponding input vector in the quadrature representation is [cf.
Eq. (C.6)]

nl = (xin, yin, 0, ξ1, 0, ξ2)
TRT3

= (cin, c
†
in, i ξ1,−i ξ1, i ξ2,−i ξ2)

T . (C.15)

The expression of the cavity output field is given by the input–
output relations Eq. (C.11) with the 2-by-6 output and feedthrough
matrices

Nl
out :=

(√
κI2 O2 O2

)
(C.16)

Nl
fdtr :=

(
I2 O2 O2

)
. (C.17)
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The 6-by-6 noises correlation matrix, in time, in the ladder operator
representation, is [cf. Eqs. (5.15) and (5.18)]

〈
nl(t)nl(t ′)

T
〉

sym
=

〈(
cin(t)cin(t

′) cin(t)c
†
in(t

′)

c
†
in(t)cin c

†
in(t)c

†
in(t

′)

)
2⊕

j=1

ξj(t)ξj(t
′)

2

(
−1 1

1 −1

)〉
sym

≈ 1
2

( 0 1
1 0

) 2⊕
j=1

nj

(
−1 1
1 −1

) δ(t− t ′)
=: Dl δ(t− t ′) (C.18)

where the approximation refers to the high temperature limit Eq. (5.17).
The Fourier transform of this model gives

Dl(ω,ω ′) :=
〈
nl(ω)nl(ω ′)

T
〉

sym

=

∫
dtdt ′

2π
eiωt+iω ′t ′

〈
nl(t)nl(t ′)

T
〉

sym

= Dl δ(ω+ω ′). (C.19)
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E X A C T I N T E G R AT I O N S

First, we show that the integrals we are concerned with in Sec. 9.1.1,
Eq. (9.11), do converge. The denominator is a polynomial: the denom-
inators of the mode functions is of order 1 [cf. Eqs. (8.10a)] and they
always come as a product of two mode functions in the integrand; the
functions C, R, and I from Eqs. (9.13) all have the same denominator
product of

∣∣χopt
∣∣2 Eq. (5.23e) and

∣∣χj∣∣2 Eq. (5.23d) which is of order
2 + 4 = 6. The denominator of the function X is of order 12. From
standard real analysis, we know that the usual Riemann-Stiljes integral
over the real line of a (non-singular) polynomial function converges if
the polynomial order of the function is < -1 [Mar19]. The numerators
in C, R, I, and X are of order < 5, hence the integrals converge. Mul-
tiplying the numerators by a bounded function does not change the
convergence, hence the oscillatory e−iωTsep from the mode functions
in the EL and LE sectors of σtm does not prevent convergence.

The term S, Eqs. (9.13a), in σout is a constant and its integration
converges for our choice of mode functions, because the overall poly-
nomial order is -2. This means that the mode functions must be of
order −1/2 at most. In the absence of the mode functions the integral
of this term would diverge. This is a remnant of the (unphysical)
white-noise model for the vacuum noise of the electromagnetic bath
of the cavity that has infinite energy if one assumes all frequencies on
the real line are physical.

d.1 integration formula for Tsep = 0

When Tsep = 0, the integral of Eq. (9.11) is of a form that bears an
explicit symbolic solution given by a formula [GZ15, entry 3.11.2 in 8th
edition]. The derivation of this formula relies on residue integration
[Jam47, sec. 7.9].

The usage of the formula is as follows. Consider the integral

I =

∫∞
−∞ dω

g(ω)

d(ω)d(−ω)
(D.1)

where g(ω) and d(ω) are polynomials in ω so that the global order
of the integrand is strictly less than -1, and the roots of d(ω) all have
strictly positive complex parts. In that case, there is a known explicit
formula providing the symbolic expression of the integral. We do not
reproduce this formula here and refer the reader to standard tables of
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integrals like [GZ15, entry 3.11.2 in 8th edition] 1, or to [Hof15, app.
B.5]. We implemented the formula in [Gut24, Theoretical predictions
derivation .nb] 2 based on a codes by Sebastian Hofer and Klemens
Winkler.

We show that the integrand Ftm(−ω)σout(ω)FtmT
(ω) in Eq. (9.11) is

of the right form to use the formula. First, we saw above that, for our
choice of mode functions fE and fL, the integrand decays fast enough
for the integral to converge, that is its polynomial order is < -1.

Second, we check that the denominators are of the form d(ω)d(−ω),
where the roots d(ω) all have strictly positive imaginary parts; con-
sequently, the roots of d(−ω) have negative imaginary parts. The
terms C, R, and I in σout all have the same denominators from∣∣χopt

∣∣2∣∣χj∣∣2, cf. Eqs. (9.13). Because of the symmetry χ∗opt(ω) =

χopt(−ω) and χ∗j (ω) = χj(−ω), their denominator is of the required
form d(ω)d(−ω). The roots of χopt(ω) is −i κ

2 in the negative complex
plane and χopt(ω) must be associated to d(−ω) and χopt(−ω) to d(ω)

(because its root i κ
2 has positive a complex part). The roots of χj(ω)

are ω± = (±
√

4ω2
m − γ2

m − iγm)/2 which both have negative imagin-
ary parts, so that χj(ω) must be associated to d(−ω) and χj(−ω) to
d(ω).

The denominators of the mode functions fE(ω) and fL(ω) are first
order polynomials with roots ωE = ωm + i Γ in the upper complex
plane and ωL = −ωm − i Γ in the lower complex plane, cf. Eqs. (8.10a).
In the integrand Ftm(−ω)σout(ω)FtmT

(ω) they come in different vari-
ations of f(∗)α (∓ω)f

(∗)
β (±ω) where the (loose) notation here describes

that sometimes there is a conjugation and/or a minus sign in the
argument. There are three cases to treat: either both roots are in
the positive or the negative complex plane, or one root has positive
complex part and the other one has negative complex part:
• When both roots are in the positive complex plane, we call the

product of their denominator e(ω). For example in the tensor
notation of Eq. (9.14) FL,1(−ω)FE,1(ω) gives fL(−ω)fE(ω), whose
denominator is (−ω −ωL)(ω −ωE) = e(ω) with both roots in
the positive imaginary plane. Multiply the entry of the integrand
by 1 =

e(−ω)
e(−ω) – that is FL,1(−ω)σout

11 (ω)FE,1(ω)
fL(ω)fE(−ω)
fL(ω)fE(−ω) in the

example. This changes the numerator and denominator but not the
global polynomial order of the entry. The denominator becomes
e(ω)e(−ω), which is the form required to use the integration
formula because the roots of e(ω) are in the upper complex plane.
The denominators must be multiplied by the denominators of∣∣χopt

∣∣2 and
∣∣χj∣∣2 from σout. The modified numerator from the mode

1. Mind to use the 8th edition of 2015 (sometimes also referred to as published in
2014) onward, there were a typos before.

2. File path:
Thesis_CGut_StationaryOptomechanicalEntanglement/chapter_structure/

9ch_TheoreticalPredictions/TheoreticalPredictions_derivation.nb
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functions must be multiplied to the numerator of the corresponding
entry of σout – in our example that would be σout

11 .
• Proceed similarly if both roots have negative complex parts and

assign them to e(−ω).
• If their complex parts have different signs – as for instance in
FE,2(−ω)FE,1(ω) which is f∗E(ω)fE(ω) – then we call the one with
the root in the positive complex plane e(ω) ((ω−ωE) in the ex-
ample) and the one in the negative plane we call e ′(−ω) ((ω−ω∗

E)

in the example). Then, multiply the whole entry by 1 =
e(−ω)e ′(ω)
e(−ω)e ′(ω)

so that the denominator is e(ω)e ′(ω)e(−ω)e ′(−ω), which is of the
right form with roots of e(ω)e ′(ω) in the upper half complex plane.
And, again, the adapted numerator and denominator must be mul-
tiplied to the corresponding entry of σout – in our example that
would be σout

21 – in order to define d(ω) and g(ω) as in Eq. (D.1).
This shows that the integral entries of σtm Eq. (9.11) can be evaluated

symbolically with the formula [Hof15, App. B.5] whenever Tsep = 0.
In practice one must adapt the numerators and denominators care-
fully; see [Gut24, Theoretical predictions derivation .nb] 3, or Klemens
Winkler’s master thesis [Win18]. When Tsep > 0, the numerators of
certain entries are non-polynomial and the formula does not apply.

d.2 method of residues

Consider integrals of the form

I =

∫∞
−∞ dx I(x) (D.2)

where x is real and the integrand I(x) is complex withN (non-essential)
poles {zj}

N
j=1; for our use in this work, we also assume that all the zj

have non-zero complex parts. 4 Hence, the integrand can be rewritten
as a rational function with a denominator proportional to

ΠN
j=1(x− zj)

nj (D.3)

where nj ∈ N∗ are the (finite) order of the poles. For all the integrands
in this work, it turns out that all the relevant poles are of order one.

To use the residue integration technique (see standard textbooks on
complex analysis for reference, for example [Mar19, Ch. 9] and [RHB06,
Ch. 24]) one first "promotes" the real argument x of the integrand to
the complexes, and calls the new complex argument z. Experience
showed that this step is a potential pitfall. It is important to write I(x)
as a function of real x explicitly and then perform the formal change of

3. File path: see footnote 2.
4. It is in principle possible to compute purely real poles of order one with Cauchy

principal value of the integral [Mar19, Ch. 9].
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variable x→ z. For instance, terms of the form |x− c|2 = (x−c)(x−c∗)

which are different from |z− c|2 = (z− c)(z∗ − c∗).

The technique then makes use of Cauchy theorem, that applies
where the thus promoted integrand is holomorphic. In this docu-
ment, all integrands I(z) are holomorphic on the whole complex plane
because they are all independent of z∗ (zero Wirtinger derivative).

All the integrands we consider satisfy

lim
|z|→∞
Im[z]⩾0

|I(z)| < O
(
|z|−1−d

)
→ 0, d > 0 (D.4)

that is, when the modulus of the argument is large, all the integrands
decay strictly faster than 1/|z| in the upper complex plane. This is true,
first, because we saw at the beginning of this Appendix D that the
polynomial order of all the integrands in σtm Eq. (9.11) was strictly less
than -1. Second, the non-polynomial contributions in σtm are complex
oscillatory exponential eizTsep that decays exponentially fast whenever
the complex part of z is greater than zero. This suggests the following
integration contour, identical for all the integrands: the interval [−R, R]
on the real axis and closed by a half circle CR (of radius R) in the
upper half-plane (the contour parameter R is strictly positive so that
the path is positively oriented).

The poles enclosed by the contour are {zj}j∈J(R), where J(R) selects
the appropriate indices. By Cauchy theorem we have∫R

−R

dz I(z) +
∫
CR

dz I(z) = 2πi
∑

j∈J(R)

Res
[
I, zj
]

(D.5)

where Res
[
I, zj
]

is the residue of the pole zj of I. The residue of poles
of order one is

Res
[
I, zj
]
= lim

z→zj
(z− zj)I(z) =

[
(z− zj)I(z)

∣∣∣∣
z=zj

. (D.6)

Using that the decay of the integrands is faster than 1/|z| Eq. (D.4),
the contribution of the integral over the half circle will be O

(
R−d

)
,

d > 0, that vanishes when R→ ∞. Therefore,

lim
R→∞

∫R
−R

dz I(z) +
∫
CR

dz I(z) =
∫∞
−∞ dz I(z)

= 2πi
∑

Im[zj]>0

Res
[
I, zj
]

= I.

(D.7)

In Eq. (9.16) we called the poles with positive imaginary part p+.



E
D E R I VAT I O N O F E P R - VA R I A N C E F O R M U L A

We present here some details supporting the derivation of the ap-
proximate formula for ∆EPR Eq. (9.27) and the analysis in the relevant
limit cases from Sec. 9.4. The full (pedantic) derivations and system-
atic checks are performed and documented in [Gut24, Theoretical
predictions derivation .nb] 1.

e.1 symmetry of temporal modes’ covariances

With help of the tensorial form Eq. (9.14) we find that

σtm
12 = σtm

EE,12 =

∫
dωFE,1(−ω)σout

1,2 (ω)FE,2(ω)

=

∫
dωfE(−ω)f∗E(−ω) [S+C(ω) − I(ω) +X(ω)] (E.1)

and

σtm
34 = σtm

LL,12 =

∫
dωFL,1(−ω)σout

1,2 (ω)FL,2(ω)

=

∫
dωfL(−ω) [S+C(ω) − I(ω) +X(ω)] f∗L(−ω)

=

∫
dωfE(ω)f∗E(ω) [S+C(ω) − I(ω) +X(ω)]

=

∫
dωfE(−ω)f∗E(−ω) [S+C(ω) + I(ω) +X(ω)] (E.2)

where we used that fL(−ω) = fE(ω) in the third line [cf. Eq. (8.10a)];
then we changed variable ω → −ω in the next step and used that
C(ω) and X(ω) are even and I(ω) odd [cf. Eqs. (9.13)]. Hence, the
integrands with I cancel upon summing them in Eq. (9.24) and the
integral becomes

σtm
12 + σtm

34 = σtm
EE,12 + σ

tm
LL,12

= 2
∫

dωfE(−ω)f∗E(−ω) [S+C(ω) +X(ω)]

= 1 + 2
∫

dωfE(−ω)f∗E(−ω) [C(ω) +X(ω)] . (E.3)

The unity factor comes from the integral involving S = 1/2 that can
be pulled out so that we are left with the norm of fE which is 1, cf.
Eq. (8.12).

1. File path:
Thesis_CGut_StationaryOptomechanicalEntanglement/chapter_structure/

9ch_TheoreticalPredictions/TheoreticalPredictions_derivation.nb
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Similarly, we recognise that σtm
24 is the complex conjugate of σtm

13 , as
it is already explicit in the first line of Eq. (9.22):

σtm
13 = σtm

EL,11 =

∫
dωfE(−ω) [−C(ω) + R(ω) −X(ω)] fL(ω)

=

∫
dωf2

E(−ω) [−C(ω) + R(ω) −X(ω)] (E.4)

σtm
24 = σtm

EL,22 =

∫
dωf∗E(ω) [−C(ω) − R(ω) −X(ω)] f∗L(−ω)

=

∫
dω (f∗E(−ω))2 [−C(−ω) − R(−ω) −X(−ω)]

=

∫
dω (f2

E(−ω))∗ [−C(ω) − R(ω) −X(ω)]

=

(∫
dωf2

E(−ω) [−C(ω) + R(ω) −X(ω)]

)∗

=
(
σtm

1,3
)∗ (E.5)

where we used that fE(−ω) = fL(ω) and that C, R, and X are even
functions of ω [cf. Eqs. (9.13)]. C and X are purely real and R is purely
complex which allowed to write the next-to-last step. For ∆EPR we
need to compute

eiϕσtm
13 + e−iϕσtm

24 = 2 Re
[

eiϕ
∫

dωf2
E(−ω) [−C(ω)

+R(ω) −X(ω)]

] (E.6)

which is the result in Eq. (9.23).

e.2 details of integration and approximations

Here, we give only the detailed computation of ICEE,12 for a single
mechanical mode 2. It illustrates the logic fully and all the other terms
(for one and two modes) are treated in detail in [Gut24, Theoretical
predictions derivation .nb] 3. To lighten the notation in the single
mode case here, no reference is made to the target mode because all
quantities pertain to it, e.g. ω±

j are ω± here, Γ tot
1 is Γ tot, etc.

2. For two mechanical modes the difference is that the sum over the poles ω±
j

and ω±
j

∗
, plus the extra X-terms involving |χ1|

2|χ2|
2.

3. File path: see footnote 1.
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We write the integrand explicitly as

ICEE,12(ω) = fE(−ω)f∗E(−ω)C(ω)

≈
NE(ω)N∗

E(ω)

(−ω−ωE)(−ω−ω∗
E)
Γ roΓ tot|χ(ω)|2

=
ΓΓ roΓ tot

π
(−ω−ωE)

−1(−ω−ω∗
E)

−1

×
[
(ω−ω−)

−1(ω−ω∗
−)

−1

+(ω−ω+)
−1(ω−ω∗

+)
−1] .

(E.7)

Promote ω to the complexes and find that the poles in the upper-half
plane are

{
ω∗

±,−ω
∗
E

}
, so that

ICEE,12 = 2i ΓΓ roΓ tot

×
{
(ω∗

− +ωE)
−1(ω∗

− −ω∗
E)

−1(ω∗
− −ω−)

−1

+(ω∗
+ +ωE)

−1(ω∗
+ −ω∗

E)−1(ω∗
+ −ω+)

−1

+(−ω∗
E +ωE)

−1 [(−ω∗
E −ω−)

−1(−ω∗
E −ω∗

−)
−1

+(−ω∗
E −ω+)

−1(−ω∗
E −ω∗

+)
−1]} .

(E.8)

If ω̄ = (1 + d)ωm in ωE,L with 1 ≫ |d| we find

ICEE,12 ≈ 8Γ roΓ tot

γm(2Γ + γm)

ν2 + 2

ν2 + 4 + 4d2

ν2

. (E.9)

We introduced the notation ν := Γ
ωm

. We used the high mechanical
Q limit to neglect γm against ωm. Also we neglected d against unity.
Importantly, we do not neglect γm against the pulse bandwidth Γ or
the demodulation mismatch ωmd. If d = 0 we find from Eq. (E.8)

ICEE,12 =
8Γ roΓ tot

γm(2Γ + γm)

(2Γ + γm)2 + 8ω2
m

(2Γ + γm)2 + 16ω2
m

≈ 8Γ roΓ tot

γm(2Γ + γm)

ν2 + 2
ν2 + 4

(E.10)

where we performed the same approximations as for Eq. (E.9) above.
We see that these approximations lead to the same result as taking the
limit d→ 0 in Eq. (E.9).

In [Gut+20], we truncated this integral and kept only the term from
the residue at ω∗

− [the first term in the curly bracket of Eq. (E.8)].
There, we explained that this leads to an upper limit on the pulse
bandwidth Γ [Gut+20, Eq. (25)]. In this more general derivation, the
sufficient condition for entanglement Eqs. (9.46) is similar to that
Equation (25).

We checked this explicit integration (by hand) with Mathematica’s
built-in integration function, for all terms and for both one and two
mechanical modes cases. Also, we checked systematically the mathem-
atical manipulations and simplifications not involving approximations.
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And we compared the approximation steps numerically. These checks
are performed and documented in [Gut24, Theoretical predictions
derivation .nb] 4.

e.3 limit of finite filter bandwidth Γ 2/ω2
1 > 0

We give here the details to Sec. 9.4.2 treating the limit of finite but
small ν, 1 ≫ ν2 > 0 [cf. Eq. (9.30)]. Expand A(d = 0) = 1+ ν2

4 +O
(
ν3
)

and neglect terms of order 3 in ν (for perfectly tuned filter functions
d = 0, only A and N1 depend explicitly on ν) in Eq. (9.27) to obtain

∆EPR = 2 +G [E+N0 +N1]

≈ 2 +G

{(
1 −N0

Γ

Γ tot
1

)
+

2Γ
γ1

(1 −N0)

+
Γ

2γ1
ν2
[(

1 +
γ1

2Γ

)
+N1

(
1 −

γ1

2Γ tot
1

)]}
.

(E.11)

The first term in the curly bracket originates from E and it becomes
negative if N0 > 0 and for Γ large enough. For that reason, we casually
call E the entanglement term. The second term in the curly bracket
is positive and at best zero when N0 = 1. The square bracket term
cannot become negative in the high temperature limit where Γ tot

1 ≫ γ1.
Hence, the second term and the square bracket term are detrimental
to entanglement detection. Moreover, the second term is larger than
the square bracket by a factor ν−2 ≫ 1. 5 Therefore, it is best to choose
N0 = 1 because it simultaneously cancels that relatively large second
term and it is best to make the first term in the curly bracket negative.
When N0 = 1, the first (entangling) term becomes negative once the
necessary condition Eq. (9.35) Γ > Γ tot

1 is satisfied.

N0 is 1 when ϕ = 0 and in the limit Tsep → 0. Then, N1 = 4−ν2

4+ν2 ≈ 1
which is sub-optimal for entanglement. We replace in Eq. (E.11) and
find the following sufficient condition for detecting entanglement(

Γ

Γ tot
1

− 1
)(

1 +
ν2

4

)
>
Γ

γ1
ν2. (E.12)

It incorporates the necessary condition Γ > Γ tot
1 Eq. (9.35). Neglecting

ν2 against 1 we get

Γ

Γ tot
1

−
Γ 3

γ1ω
2
1
> 1. (E.13)

It encodes the asymptotic behaviour at large Γ where the cubic term
dominates over the linear one, thus preventing entanglement detection
in the limit. This is a 3rd order polynomial in Γ and Mathematica finds

4. File path: see footnote 1.
5. In N1 only terms of order ν0 will contribute.



E.4 limit of finite ϕ and Tsep 169

that the inequality is satisfied when [Gut24, Theoretical predictions
derivation .nb] 6

(3Γ tot
1 )3 < 4γ1ω

2
1 (E.14)

which leads to the expressions Eqs. (9.46) of the sufficient conditions
for entanglement detection with the EPR-variance (in the single mech-
anical mode case).

e.4 limit of finite ϕ and Tsep

We give here details on Sec. 9.4.3. The starting point is the formula
for ∆EPR in the limit ν2 ≪ 1 Eq. (E.11). As we discussed there, it
is best to have N0 close to 1, therefore we expand with respect to
ϕ close to zero (or close to 2πn with n ∈ N) and small Tsepγ1 > 0.
The latter is guarantied to be small in the high-Q1 Eq. (8.1) and
sidebands unresolved Eq. (8.4) regime: κ−1 ≲ Tsep ≪ ω−1

1 , so that
Tsepγ1 ≪ 1/Q11 ≪ 1. When ν2 ≪ 1, the cosine term dominates in N1.
(This is the regime N1 ≈ 1 which is sub-optimal for entanglement;
we postpone a possible optimisation with N1 < 0 to the end of this
section.) We replace the expansions of N0 and N1 up to order ν3, ϕ3,
T 2

sep in Eq. (E.11) and we use the necessary condition for entanglement
in the high temperature limit Γ > Γ tot

1 ≫ γ1. After some manipula-
tions detailed in [Gut24, Theoretical predictions derivation .nb] 7, one
obtains the following expression

∆EPR ≈ 2 +G

[
Γ 3

γ1ω
2
1
+ 1

−
Γ

Γ tot
1

(
1 − TsepΓ

tot
1 (1 +ϕQ11ν

2) −ϕ2 Γ
tot
1
γ1

)]
.

(E.15)

The last term in the square bracket is the one that can lead to entan-
glement detection. Its contribution is reduced by finite ϕ and Tsep in
the rounded parenthesis. Entanglement detection is not affected when
each term in the rounded parenthesis is much less than 1

Tsep ≪ 1
Γ tot

1
and ϕ2 ≪ γ1

Γ tot
1

and Tsepϕν
2 ≪ 1

Q11Γ
tot
1

. (E.16)

These conditions lead to Eqs. (9.47a) and (9.47b) in Sec. 9.4.3.

In Figure 9.8 one sees that the domain of detected entanglement
is increased periodically for fintie Tsep. This is when N1 becomes
negative. In the limit ν2 ≪ 1, the cosine dominates in N1, so that N1

is approximately minimised when ϕ+ 2Tsepω1 = π [or 2π(n+ 1/2)
with n ∈ N]. We assume ϕ small, so that N0 is remains close to its

6. File path: see footnote 1.
7. File path: see footnote 1.
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maximum. To be close to N1’s minimum, we set 2Tsepω1 = π + t,
where |t| ≪ 1 is a small deviation. We repeat the analysis above for
expansions in ϕ, ν, and t around zero in Eq. (E.11). We then neglect
contributions O

(
ϕ3, t2, ν3

)
, and use Γ > Γ tot

1 ≫ γ1 and Q11 ≫ 1.
After some manipulations detailed in [Gut24, Theoretical predictions
derivation .nb] 8 we find

∆EPR ≈ 2 +G [1

−
Γ

Γ tot
1

(
1 −

Γ tot
1 Q11ϕ

(
2ϕ+ tν2

)
+ νγ1/4 + tΓ tot

1
2ω1

)]
.

(E.17)

As in Eq. (E.15), the factor of Γ/Γ tot
1 can make the term in the square

bracket negative (corresponding to entanglement detection) and the
fraction term in the rounded parenthesis makes it less than 1 which is
detrimental. Differently form Eq. (E.15) however, there is no term in
Γ 3 opposing entanglement detection. The structure of the formula is
then closer to that of Eq. (9.42) that led to unconditional entanglement
for the optimal choice of Γ [cf. ∆opt

EPR Eq. (9.45)]. This is also what
we see here: if the term in the rounded parenthesis is positive, then
entanglement is detected upon choosing Γ large enough (bearing in
mind that ν2 ≫ 1 must still hold).

As above, the contributions of finite ϕ, t and ν do not disturb
entanglement detection if each of the terms of the fraction is much
less than 1. We obtain four conditions

2ϕ2 ≪ γ1

Γ tot
1

and tϕν2 ≪ γ1

Γ tot
1

and
ν

4Q11
≪ 1 and t≪ ω1

Γ tot
1

. (E.18)

The last condition is trivial when Γ tot
1

2
< Γ 2 ≪ ω2

1 and for |t| ≪ 1. The
next-to-last condition is trivial as well in the high-Q limit. The first
condition was encountered already in Eq. (E.16). Replacing the latter
in the second condition we find

t <
1

ν2
√
n1(C1 + 1)

. (E.19)

It is compatible with the assumption ν2 ≪ 1 we used to derive it. The
separation between the temporal modes is set by the choice of mode
functions, hence there is, in principle, no uncertainty in the way it
enters the analysis (alike ϕ for a fixed witness). Rather, it is ω1 that
might not be known perfectly. Given an estimate of the mechanical
frequency ω̄ and its error δω so that ω̄ = ω1 + δω [same notation as
for the detuned filters, cf. Eq. (8.8)], then 2Tsepω̄ = π(2n+ 1) + t and
t = 2Tsepδω. In the limit ω1 ≫ δω, we can write

δω

ω1
<

1
πν2

√
n1(C1 + 1)

. (E.20)

8. File path: see footnote 1.
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In the high bath temperature limit,
√
n1(C1 + 1) is large but ω2

1
Γ 2 can be

large too (because ν2 ≪ 1) and we cannot make a general statement
based on this relation. An example gives some orientation with
parameters of Tab. 9.1, and for Γ a few times Γ tot

1 , we find that δω/ω1

can be more than 1. This means that the constraint for setting Tsep is
not strict in that case.

Theoretically, ϕ and t can be set to zero and the sufficient condition
for detecting entanglement is

Γ tot
1 < 2ω1Q11 ⇐⇒ n1 (C1 + 1) < 2Q2

1. (E.21)

This is much less stringent than the sufficient condition Eqs. (9.46) we
had found for Tsep = ϕ = 0 (lhs is the cubic root here). We see the
effect in Fig. 9.8 where more states are found to be entangled (for a
broader range of Γ ) and in Fig. 9.9 where entanglement is detected for
this optimised choice of separation during the modes, while it is not
when Tsep = 0.

e.5 limit of imperfectly tuned temporal filters

We give here details on Sec. 9.4.4. Starting from Eq. (9.27) for a
single mechanical mode, assume 1 > ν≫ |d| > 0, where the demodu-
lation mismatch d was defined in Eq. (8.8). In the expression of N0

Eq. (9.33) this means that the factor of the cosine is positive and it
dominates the sine term. From E and N0 Eqs. (9.31) and (9.36), it is
again advantageous to maximise N0 with ϕ = Tsep = 0 so that N1 ≈ 1;
see discussion in Sec. E.3 above. After a number of approximations
and manipulations, documented in [Gut24, Theoretical predictions de-
rivation .nb] 9, the thus approximated expression for the EPR-variance
with imperfectly tuned filter functions is

∆EPR ≈ 2 +G

[
1 −

Γ

Γ tot
1

+ 4
δω2

γ1Γ
+

Γ 3

2γ1ω
2
1

]
. (E.22)

The EPR-variance detects entanglement when the square bracket
is negative (it is a polynomial of order four in Γ ). With Mathematica
we find that ∆EPR detects entanglement when the sufficient condition
from Eqs. (9.46) (derived for perfectly tuned filters) holds and also
when the following holds

d =
δω

ω1
<

Γ

Γ tot
1

√
n1(C1 + 1)

2Q
(E.23a)

⇔ δω

Γ
<

1√
n1(C1 + 1)

. (E.23b)

9. File path: see footnote 1.
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The explicit dependence in the filter bandwidth Γ is eliminated using
the necessary condition Eq. (9.35) to lower-bound the rhs of the first
line with Γ = Γ tot

1 . It yields a strict condition on the knowledge of the
mechanical frequency Eq. (9.48).

We do not study the optimisation ofN1 as we did in Sec. 9.4.3. Given
that N1 is as before – and becomes close to -1 for the same Tsep = π

2ω1
– we expect that this optimisation yields similar improvements.

e.6 spectator mode scenario

We give here details on Sec. 9.4.5. Start from Eq. (9.27) with g2 > 0
and the spectator mode frequency ω2 = (1 +D)ω1 = ω1 + ∆ω, cf.
Eq. (5.11). Assume as well that the spectator mode is unresolved by
the temporal mode filters, i.e. Γ 2 ≪ ∆ω2 so that ν2 ≪ D2.

First, we justify neglecting the cross-term contributions (from the
integrals IX) in the derivation of Eq. (9.27). In Sec. 9.2 we argued
that they are proportional to 1/Qjk which is very small. In the high
mechanical quality factors limit Eq. (5.16) one can safely assumeQjj ≫
1/D, therefore it is consistent to assume ∆ω > Γ ≫ γj. Therefore, it
holds that(

1
∆ω

+
Γ

∆ω2 + Γ 2

)
≪ 1
γ1

(E.24)

which justify ignoring certain cross-terms [Gut24, Theoretical predic-
tions derivation .nb] 10. To neglect the remaining cross-terms one must
assume

∆ω≫ γ2C1 (E.25)

which is fulfilled in most practical situations: for C1 of order 100 and
D ∼1%, then Qjj ≳ 106 ≫ C1

D ∼ 104 and the assumption above is met.
These approximations are detailed and checked in [Gut24, Theoretical
predictions derivation .nb] 11.

For perfectly tuned mode functions ω̄ = ω1 and ϕ = Tsep = 0 (so
that N0 = 1), Eq. (9.27) becomes

∆EPR ≈ 2 +G

[
1 −

Γ

Γ tot
1

+
Γ 3

2γ1ω
2
1

(
(1 +N1) +

(2Wω1)
2

Γ 2 +∆ω2 (1 +N2)

)] (E.26)

where we neglected γj against Γ tot
j and Γ in the large thermal occupa-

tion limit Eq. (5.17). One also has that N1 ≈ 1. When ν2 ≪ D2, then
N2 is also approximately 1 and one neglects Γ 2 against ∆ω2 in the

10. File path: see footnote 1.
11. File path: see footnote 1.
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last term. This leads to the condition Eq. (9.49) deciding whether this
last term dominates over the factor 2 (from the term in N1 originating
from the single mode case); when it does, then the spectator mode is
the main detrimental contribution preventing entanglement detection.
In that case, the sufficient condition for entanglement is

Γ

Γ tot
1

− 1 >
4W2

γ1∆ω2 Γ
3. (E.27)

This is a cubic inequality in Γ that has solutions when Eqs. (9.50) hold,
see [Gut24, Theoretical predictions derivation .nb] 12.

12. File path: see footnote 1.
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E L E M E N T S O F H O M O D Y N E D E T E C T I O N

In this appendix, we workout the principles of homodyne detection
of light at optical frequencies. We begin by presenting a model for a
homodyne detector [GZ00; SW84; Sha85; YC83; YS80; GLS16; Leo03;
LP95], which we subsequently apply to describe dual-rail homodyne
detection [WC86; Wal87; FOP05]. The latter enables simultaneous
measurement of both quadratures of the light field, representing
the typical detection scheme used to implement our entanglement
protocol of Part ii. Notably, this approach was used and detailed in
the theses of Jason Hölscher-Obermaier and Ramon Moghadas Nia
[HO17; MN17].

We extend the description with a basic model of inefficient detection
and introduce passive losses [LP93], which is the particular technical (i.e.
non-fundamental) sensing noise that is most relevant for the setups
discussed in Part iii. This model forms the basis for several steps in the
postprocessing of experimental data presented in Ch. 11 and discussed
more in detail in App. H. Based on the homodyne description, we
briefly describe the principles of heterodyne detection [WM09; Hof15]
and attempt to clarify why it is equivalent to a dual-rail homodyne.

f.1 ideal (balanced) homodyne detection

A balanced homodyne detector measures a single quadrature of a (dir-
ectional) mode of light. The detector has three stages: amplification,
measurement, and noise mitigation/cancellation. The amplification
happens by mixing, on a beam splitter, the light carrying the signal
with an intense local oscillator (LO) field. The beam splitter transit-
ivity is ηh for the signal. It is a quadrature of the signal mode that
is amplified, and the phase of the LO selects which quadrature (or
linear combination thereof) is amplified and effectively measured. The
physical measurement is a (linear) light intensity measurement (e.g.
with a photodiode) after the beam splitter. There are several strategies
to mitigate possible noise in the inputs before amplification, but the
only one relevant for this work is balanced homodyne detection. In
a balanced homodyne detector, the beam splitter is 50:50 (i.e. with
ηh = 0.5, or almost) and both output ports are measured. The intensity
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measurements are then subtracted, which cancels common (classical)
noise from the amplification stage. 1

Figure F.1 shows a beam splitter, whose Hamiltonian and dynamics

Fig. F.1 Icon of a beam
splitter (BS) of transmitiv-
ity η for the horizontal ain
mode. In- and out- modes
are mapped according to
Eq. (F.1).

are already introduced in Sec. 5.3.1. We use the following convention
for the beam splitter transformation relating input and output channels
(Heisenberg picture) [Lou00](

aout

bout

)
=

( √
η i

√
1 − η

i
√

1 − η
√
η

)
︸ ︷︷ ︸

:=B(η)

(
ain

bin

)
(F.1)

and similarly for the creation operators. B is called the scattering-
matrix and 1 ⩾ η ⩾ 0 is the transitivity of the port labelled 1. The
two complex i guaranty unitarity of the transformation and lead to a
relative phase between the output ports (there are several conventions
for the matrix B). 2.

The schematic of a balanced homodyne detector is given in Fig. F.2.
There are no losses or detection inefficiency (which will be treated

Fig. F.2 Ideal homodyne
detector with amplification
beam splitter ηh mixing sig-
nal mode to the bright local-
oscillator (LO). The beam
splitter outputs are detec-
ted by photodiodes meas-
uring the light intensity in
each mode. The homodyne
measurement record h is the
subtraction of the detector’s
photocurrent.

in a later section) and if the transmitivity ηh is exactly 1/2, then the
detector is ideal. After this beam splitter mixes the input with the
local oscillator, the annihilation operators are

b1 =
√
ηhas + i

√
1 − ηhALO (F.2a)

b2 = i
√

1 − ηhas +
√
ηhALO. (F.2b)

In the following we call this the amplification stage, and the beam
splitter will be called amplification beam splitter. Subsequently, the
photo-detectors measure the light intensity of both arms (i.e. they
implement the number operators observable)

b
†
1b1 = ηha

†
sas − i

√
ηh(1 − ηh)

(
A

†
LOas −ALOa

†
s

)
+ (1 − ηh)A

†
LOALO

(F.3a)

b
†
2b2 = (1 − ηh)a

†
sas + i

√
ηh(1 − ηh)

(
A

†
LOas −ALOa

†
s

)
+ ηhA

†
LOALO.

(F.3b)

We assume that the LO is of the form ALO = α+ aLO, where α =

|α|e−iθ ∈ C is a displacement, aLO is the annihilation operator of the
undisplaced mode, and |α|2 ≫ 1 corresponding to large LO intensity.
The recorded signals are subtracted, providing perfect background

1. The interested reader can read on imbalanced homodyne and heterodyne
measurements in [GZ00, Sec. 8.4].

2. B is not the unitary evolution matrix generated by the beam splitter interaction
Hamiltonian HBS from Eq. (3.11) [LP95]; see for example [Leo03, Sec. 3.3] for the
explicit derivation of B from HBS.
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noise cancellation when ηh = 0.5; one finds the homodyne photocur-
rent

h = b†1b1 − b
†
2b2 (F.4a)

≈ −i (α∗as −αa
†
s ) (F.4b)

=
√

2|α| (cos(θ)ys − sin(θ) xs) (F.4c)

where the approximation neglected terms that are not at least of order
|α| ≫ 1. The choice of the LO’s phase θ determines which combination
of quadrature of the signal mode is encoded in h – i.e. measured by
the detection scheme. Measurement results are the expected values
of operator h. In this ideal scenario, we see the principles of the
detection at work: the difference of intensity measurements cancels
exactly the spread (variance) of both inputs (i.e. the terms in A†

LOALO

and a†sas). The LO amplifies the signal by |α|. Mathematically, it led to
neglecting the LO added noise (the fluctuations of aLO) in Eq. (F.4b).
Technologically, this leads to the use of linear photo-detection (as
opposed to photon counting) that has high detection efficiency.

f.1.1 Vacuum fluctuation detection

The state of the signal mode is unspecified, in particular it can be
the vacuum state. Let us be overly precise here: the vacuum state of
that particular mode overlapping perfectly with the local oscillator
upon mixing on the amplification beam splitter. At optical frequencies,
the free fields are (almost) in the vacuum state (cf. Sec. A.6), hence a
homodyne measurement of no signal is a measurement of the vacuum
state quadratures – i.e. a shotnoise measurement 3 as in Sec. H.1. In that
case, the quadratures in Eq. (F.4c) are those of the vacuum/shotnoise
xsn and ysn, which statistics is that of the vacuum state Sec. A.1

⟨hsn(θ)⟩ = 0
〈
hsn(θ)(t)hsn(θ)(t

′)
〉
= α2δ(t− t ′). (F.5)

This is an instance of a quantum mechanical feature: measuring
"quantum nothing" gives a non-zero signal. This is in contrast to a
classical description of "measuring nothing" (no input signal): "clas-

3. Note the following jargon caveat here. Shotnoise is the intensity fluctuations
of laser light with Poissonian statistics (related to its particle–like quantum nature)
[Sch18]. In this sense, they are not the same physical thing as fluctuations of the
electromagnetic ground/vacuum state. In Section A.3, we saw that the light state
from an intense laser is a coherent state, with identical fluctuation statistics as the
vacuum. This is why we use the terms "vacuum" and "shotnoise" interchangeably
in the jargon of this thesis (although it is clearly misleading). Actually, for a long
time, I thought that a shotnoise measurement yielded the fluctuations of the LO –
the shotnoise indeed. The derivation of Eqs. (F.4) makes it clear that this is not the
case, and a thermal LO, displaced much more than its fluctuations, leads to the same
result.
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sical nothing" is an electric field with zero amplitude. For a LO with
(complex) amplitude E ∝ |α|, Eq. (F.1) gives(

Eout
1

Eout
2

)
= B(η)

(
Ein

1 = 0

Ein
2 = E

)
=

(
i
√

1 − ηE
√
ηE

)
. (F.6)

When η = 0.5 we have a copy of the field with half the intensity in
each output arm so that the homodyne current is identically zero:
hcl = I1 − I2 = 0. This remains true if the input is noisy and operator-
valued: replace E by the LO operator ALO = α+ aLO from above, then
the homodyne current is still zero because half the e amplitude in both
arms still cancels exactly. In the quantum case, it is the presence of a
non-zero term asn in the first input that leads to a non-zero homodyne
current hsn in Eq. (F.4c) – this modelling is the acknowledgement that
there are non-zero fluctuations corresponding to "quantum nothing".
Lastly, asn and aLO are independent and cannot cancel each other; this
is a defining feature of quantum noise and goes hand-in-hand with
the fact that it cannot be duplicated 4 and compensated for.

f.2 imperfect homodyne detection

This section introduces two forms of imperfections in the detec-
tion scheme: light/photon losses, which are also called (quantum)
inefficiencies; and detector darknoise.

f.2.1 Inefficiencies

Non-unit efficiency describes the fact that some of the photons in
the mode as one intends to measure are not detected – e.g. they were
lost on the way, there is a mismatch between the detected mode and
the mode of the signal light, the photo-sensitive device does not to
react to the presence of these photons, etc. A common quantum model
of photon loss processes is to put a beam splitter of transmitivity η (for
the mode to be detected) in front of the detectors [LP95]; 1 ⩾ η ⩾ 0 is
called the (quantum) efficiency of the photo-detection (unit efficiency
corresponds to the ideal case of the previous section). In Figure F.3
beam splitters with transmitivities ηd,j were placed in front of each
detector in the homodyne set-up. A noise field nd,j enters at their
second input ports. In principle, nd,j can be in any state, but at optical
frequencies they are in the vacuum state. 5 This model of detection

4. This is the statement of the non-cloning theorem [WZ82].
5. For radiation at lower frequencies (like microwaves), the free fields have thermal

excitations encoded in nd,j, and the inefficiencies introduce more noise to the results.
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inefficiency is called passive losses. The annihilation operators right
before the photo-detectors are

ej =
√
ηd,jdj + i

√
1 − ηjnd,j. (F.7)

This is the mathematical formulation of our beam splitter based model
of photon loss channels. It is not a unitary map because we dis-
card/ignore the second output port. This is a particular open-system
model that couples the signal mode (system) to the free fields (en-
vironment) linearly with a beam splitter interaction, therefore it is a
Gaussian map, cf. Secs. 3.3 and 4.1. The mechanism is to replace the
portion of lost signal photons with a portion of vacuum noise.

Fig. F.3 Imperfect homo-
dyne detector with passive
(photon) losses before and
after the amplification. At
optical frequencies, the loss
mechanism mixes vacuum
noise nb, b = s, opt, ν, and
dj, into the signal modes.

In Figure F.3 we also added two beam splitters in front of the ho-
modyne amplification beam splitter. The first one, with transmitivity
ηopt, models passive losses in the optical path to the detector (in
optomechanical devices, this models all the losses between the mech-
anical oscillator’s reflecting surface and the input of the homodyne
detector, e.g. light scattered out of the cavity mode, losses at couplers,
etc.). The second beam splitter with transmitivity ν models losses due
to mode mismatch between the signal and the local oscillator at the
amplification stage; these type of losses are also called visibility losses,
see details in [HO17, App. C.5] for example. Importantly, shotnoise
measurements (cf. F.1.1 above) are not susceptible to the passive losses
upstream of the homodyne detector (i.e. before the amplification). 6.

For the configuration of Fig. F.3, we find the operators right in front
of the photo-detectors

e1 =
√
ηd1ηhνηoptas

+ i
√
ηd1ηhν(1 − ηopt)nopt + i

√
ηd1ηh(1 − ν)nν

+ i
√
ηd1(1 − ηh)ALO + i

√
1 − ηd1nd1

(F.8a)

e2 = i
√
ηd2(1 − ηh)νηoptas

−
√
ηd2(1 − ηh)ν(1 − ηopt)nopt −

√
ηd2(1 − ηh)(1 − ν)nν

+
√
ηd2ηhALO + i

√
1 − ηd2nd2. (F.8b)

Computing the photo-current with these bulky expressions is tedious
and unpleasant (to say the least), therefore we evaluate already ηh =

1/2 (balanced detection) and assume that both detectors have the same

6. A picky remark is that, for imperfect visibility, the shotnoise thus characterised
is not exactly in that of the mode of the signal – this is irrelevant for the purpose of
this work.
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efficiency ηd1 = ηd2 = ηd. In the limit of strong amplification |α| ≫ 1,
we find

e
†
1e1 ≈ −i

√
ηd

2
A

†
LO(e1 − i

√
ηd

2
ALO)

+ i
√
ηd

2
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√
ηd

2
ALO)

†ALO +
ηd

2
|ALO|

2

=

√
ηd

2

[√
ηdνηopt(−i )(α∗as − H.c.)

+
√
ηdν(1 − ηopt)(α

∗nopt + H.c.)

+
√
ηd(1 − ν)(α∗nν + H.c.)

+
√

2(1 − ηd)(α
∗nd1 + H.c.)

]
+
ηd

2
|ALO|

2

(F.9a)

−e†2e2 = e†1e1 +

√
ηd

2

√
2(1 − ηd) [−(α∗nd1 + H.c.)

+(−i )(α∗nd2 − H.c.)] .
(F.9b)

We introduce the shorthand notations

rb(θ) := cos(θ) xb + sin(θ)yb (F.10a)

r ′b(θ) := cos(θ)yb − sin(θ) xb (F.10b)

where x and y are quadratures associated to the annihilation operators
above and b = s, opt, ν, and dj is their label. Then we can write

(α∗ab + H.c.) =
√

2|α|rb(θ) (F.10c)

−i (α∗ab − H.c.) =
√

2|α|r ′b(θ). (F.10d)

And we get the homodyne photo-current

h ≈
√

2|α|ηd

[√
νηoptr

′
s +
√
ν(1 − ηopt)ropt +

√
1 − νrν

+

√
1 − ηd

2ηd

(
rd1 + r

′
d2
)]

.
(F.11)

One finds that a measurement of the amplitude quadrature of the
signal is encoded in the photo-current for a LO phase −π/2: i.e.
hx = h(θ = −π/2) encodes xs plus some noise. The phase ys is
encoded in hy = h(θ = 0). In the notation of Sec. H.2, the continuous
outcomes of hr correspond to the measured time traces R (where r is
a label for x or y) If one knows the gain Gr of the detectors (in Volts)
one can write R = Grhr.

The noise processes nb are all independent vacuum fluctuations.
Define the 2-vectors rb = [rb(θ = −π/2), rb(θ = 0)]T (and r ′b simil-
arly) so that their covariances are〈

rbrb
T
〉
= σsn = I2/2 =

〈
r ′br

′
b
T
〉

. (F.12)
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(note that this is the case for arbitrary θ and a shift of π/2 between the
measured quadratures.) Call h = (hx, hy)

T , and write

Σh :=
〈
hhT

〉
sym = 2|α|2ηd

[
ηdνηoptσs +

(
1 − ηdνηopt

)
σsn
]

(F.13)

where σs =:
〈
r ′sr

′
s
T
〉

is the covariance matrix of the signal state.

When ηd = ν = ηopt = 1 one retrieves the ideal detection case of
Eqs. (F.4). A measurement of shotnoise, with σs = σsn, gives

Σhsn = 2|α|2ηdσsn. (F.14)

That is shotnoise again (cf. Eq. (F.5)), amplified by 2|α|2 and damped
by the photodiodes efficiency ηd. It is independent of the losses before
the homodyne amplification beam splitter, as mentioned above.

f.2.2 Darknoise

Opposite to photons lost or not counted, darknoise is the phe-
nomenon where a detector outputs a signal in the absence of light at
the input – and the detection threshold excludes that it comes from
(unamplified) vacuum in front of the sensor. It is common to assume
that darknoise arises from processes in the detector that are far from
any quantum limit (e.g. electronics, thermal noise in the substrate
where the electrons are located, etc.), so that darknoise as a whole is
well described as a classical noise. Darknoise is characterised experi-
mentally by a measurement with the light entering the photo-detectors
completely blocked, and we call that a darknoise measurement in Ch. 11
and Sec. H.1.

In our homodyne model, we add an ad hoc fluctuation term Ndn

to the homodyne photon-current h in Eq. (F.11) above. Moreover, we
assume that Ndn is a white and normally distributed process

Ndn ∼ N(0, Σdn) (F.15)

where Σdn is a classical covariance matrix – in the sense that it needs
only be positive definite – that can be reconstructed from darknoise
measurements. Equation (F.13)

Σh = 2|α|2ηd
[
ηdνηoptσs +

(
1 − ηdνηopt

)
σsn
]
+ Σdn. (F.16)

f.3 dual-rail homodyne detection

Heisenberg uncertainty relations set a bound on how precisely non-
commuting observables can be known simultaneously. Now, it is not
accurate to say that non-commuting observables cannot be known
simultaneously: they can, given that their joint uncertainty fulfils the
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Heisenberg bound [WM09]. A dual-rail homodyne detector is a set-up
that measures non-commuting quadratures of a light simultaneously
[WC86; Wal87; NFM91]. The principle is to combine two homodyne
detectors, both of which measuring different quadratures, like hx and
hy from Eq. (F.11) above. Figure F.4 depicts a schematic of a DRH
subject to passive losses. The two homodyne detectors form the two
arms of the dual-rail homodyne. The signal beam is split into the two
arms by a beam splitter, which we call here the "entry beam splitter";
it has transmitivity ηDR, which is ideally 0.5.

Fig. F.4 Imperfect dual-rail
homodyne (DRH) detector
measuring different quadrat-
ures simultaneously. It is
a duplication of the imper-
fect homodyne detector of
Fig. F.3 after the entry beam
splitter and with the sym-
metric labels of the second
arm with a bar □̄. (Redund-
ant labels in the upper arm
were ignored.)

As discussed above in the context of shotnoise measurements, quan-
tum states cannot be duplicated [WZ82] and the outputs of the entry
beam splitter are not identical quantum states. Indeed, vacuum fluctu-
ations nDR enter the second input port leading to uncorrelated noise
between both arms. 7 Said differently, the outputs of beam splitters
commute, because they correspond to modes with different Hilbert
spaces, hence there are apparently no limitations from Heisenberg un-
certainty on how precisely they can be known. Crucially, however, the
information about the state of the signal before the entry beam splitter
– that can be extracted from measurements of its output ports – is
ultimately limited by Heisenberg uncertainty. In the present example,
the unavoidable extra noise nDR guarantees that it is the case.

We make the same assumptions as in Sec. F.2 with the imperfect
homodyne detection model, namely: the photo-detectors within a
homodyne detector have the same efficiency ηd (and η̄d in the other
arm), both homodyne are perfectly balanced with ηh = η̄h = 0.5, and,
importantly, all loss channels are passive losses mixing independent
vacuum fluctuations. Cascaded beam splitters before amplification
(under the assumptions above) contribute multiplicatively so that the
effect of the entry beam splitter is accounted for by replacing ηopt

by ηoptηDR = ηopt/2. The homodyne photo-current h̄ is thus as in
Eq. (F.11) with the replacement, and the signal in h has a factor i .
Because we are ultimately interested in covariance matrices, the com-
plexity of dealing with the latter is hidden in the notation Eqs. (F.10)
that turns out to be irrelevant for passive losses, cf. Eq. (F.12). 8 We call
the photo-current of the upper arm hx, i.e. assuming the appropriate
phase θ̄ = −π/2 of the LO [cf. Eq. (F.11)]. Analogously, we label
the photo-current of the lower arm hy (with θ = 0) and we define
the 2-vector h = (hx, hy)

T as above. Additionally assuming identical
visibility in both detectors ν = ν̄ and identical LO strength |α| = |ᾱ|,
the covariance matrix ΣDRH from this DRH detection scheme is the

7. The presence of this added noise is necessary to any such configuration. For
example, in [Wal87] they propose a minimal configuration with a single LO and a
single free port. It is the mere attempt of duplication that must lead to effectively
different quantum states in the output arms.

8. Identical photo-detector efficiencies across the arms is necessary for the diag-
onal entries to have the same magnitudes.
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same as Eq. (F.16), incorporating the entry beam splitter in the global
optical losses

ΣDRH = 2|α|2ηd

[
ηdν

ηopt

2
σs +

(
1 − ηdν

ηopt

2

)
σsn

]
+ Σdn. (F.17)

The configuration in Fig. F.4 examined here is an illustrative example
of implementation (that was actually implemented in the setup de-
scribed in [HO17; MN17]). Imperfect balancing of the entry beam split-
ter ηDR ̸= 0.5 and/or local oscillators with different power |αx| ̸= |αy|

leads to different noise floor levels, as discussed in Sec. H.6. Config-
urations with a single local oscillator are possible; see for example
[Wal87, Sec. 2.2 and Fig. 5a]; or using different polarisation and wave
plates, as will be (perhaps) presented in the theses of my colleagues
Kahan Dare and Manuel Reisenbauer.

f.4 heterodyne detection

The heterodyne detection setup is the same as a single homodyne
detector, like on Fig. F.2; the difference is that the LO frequency is
different from the carrier frequency of the signal. We call the corres-
ponding heterodyne detuning ωhet = ωLO −ωs – it is the beating
between both modes. The phase θ of the local oscillator with respect
to the signal is changing (rotating) at a frequency ωhet; this means
that the heterodyne output scans in time the signal light’s quadrature
cos(θ) xs + sin(θ)ys, with θ = 2πωhett. If ωhet is much faster than the
changes in the signal one wants to characterises, then one period of
the scan is almost instantaneous relatively to the signal’s dynamics, so
that the heterodyne record encodes both quadratures (quasi) simul-
taneously – like the dual-rail homodyne detector of Sec. F.3. From a
given heterodyne record, one retrieves xs and ys from the sine and co-
sine components at frequency ωhet [GZ00, Sec. 8], [WM09, Sec. 5.4.1],
[Mag21, Sec. 5.2.1].

In the study of the DRH detector in App. F.3, we saw that there
must be a beam splitter with an empty input port exposed to vacuum
noise, which guaranties imperfect knowledge of both quadratures of
the signal simultaneously. What about heterodyne detection where
there is no free port? In the literature, see for instance [LP95, Sec. 4.3]
or [FOP05, Sec. 5.6], it is explained that heterodyne detection is equi-
valent to dual-rail homodyne detection. In both these references, the
necessary added noise comes from the frequency mode-mismatch
between the signal and the LO: the signal at ωLO −ωhet and some
free field (in the vacuum state) at ωLO +ωhet are amplified after the
beam splitter that mixes them to the LO, thus both contribute to any
information extracted from the heterodyne current demodulated at
ωhet. Another approach to demonstrate the equivalence between het-
erodyne and DRH detection is by means of stochastic evolution for
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the state of the detected light conditioned by a linear measurement as
in [WM09, Sec. 4] and [Hof15, App. B]. In this approach, the math-
ematical mechanism inducing the effective loss of half the photons at
the entry beam splitter is the constraint that the stochastic processes
associated with each measurement are modelled by a Wiener process
with unit variance.



G
A D D I T I O N A L C A N D I D AT E ( C AV I T Y ) S E T U P S

This appendix presents the theoretical study of stationary optomech-
anical entanglement detection with the protocol and theoretical pre-
dictions of Part ii, for three setups complementing the analysis in
Ch. 10. We discuss a soft-clamped membrane (Sec. G.1)[Tsa+17] and a
soft-clamped photonic crystal (Sec. G.2) [GNG19] that are elastically
deforming solid-state objects clamped to some bulk substrate; then we
discuss a levitated nano-particle trapped in an optical tweezer with
a cavity perpendicular to the tweezer mode collecting (coherently)
scattered light for detection (Sec. G.3) [Del+20b; Del19].

g.1 soft-clamped membrane

In Sec. 10.1 we studied an implementation of a membrane hard-
clamped to a (thick) rigid substrate patterned to produce a phononic
bandgap. It is possible to pattern the (thin) membrane itself into a
phononic shield, which allows to keep the bandgap isolation in ad-
dition to having locally smaller deformations because the deforming
structure is larger. The mode of interest is localised to a relatively
small defect cell at the centre of the membrane, and because the whole
membrane deforms, the clamping and associated bending losses are
strongly reduced. This technique is termed soft-clamping of the defect
cell to the rigid substrate holding the patterned membrane. The rel-
atively large size of the deformable membrane implies the presence
of more modes closer to each other 1 compared to the hard-clamped
membranes – and we saw that this is a possibly important disadvant-
age to perform our scheme. In Tab. G.1, we list achievable parameters
for such systems; they were quoted to us by Albert Schliesser; ex-
amples of soft-clamped membranes in Albert Schliesser’s group are
[Ros+19] and [Che+20].

We start with the basic scenario where the drive is tuned to the
cavity, there is only one mechanical mode, and the temporal modes are
tuned perfectly to the mechanical sideband. The sufficient condition
Eqs. (9.46) with the parameters of Tab. G.1 gives that entanglement
would be detected – and the ratio between lhs and rhs is less than half.
This is much better than the hard-clamped device. This is confirmed on
Figs. G.1 (left) where we show the EPR-variance computed both exactly

1. Commonly, 1 to 5 mechanical modes in the bandgap and a high density of
modes outside the bandgap.

184
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Physical property Symbol Value Units

mech. frequencies ω1 1.2 × 106 × 2π [rad Hz]

ω2 (1 + 0.1)ω1 [rad Hz]

cavity linewidth (FWHM) κ 10ω1 [rad Hz]

drive detuning ∆ −60 × 103 × 2π [rad Hz]

optomech. couplings g1 21.5 × 103 × 2π [rad Hz]

g2 g1/3 [rad Hz]

mech. linewidths (FWHM) γ1 1.2 × 10−3 × 2π [rad Hz]

γ2 132 × 10−3 × 2π [rad Hz]

mech. quality factors Q1 109 []

Q2 107 []

mech. baths temp. T1 7 [K]

T2 T1 [K]

baths’ occupation numbers n1 1.2 × 105 []

n2 1.1 × 105 []

Table G.1 Parameters of a soft-clamped membrane similar to [Ros+19; Che+20].
Details and comments were generously provided by Albert Schliesser in private
communications. The coupling strength g1 was chosen here so that C1 ≈ 1.

with the method of Sec. 9.1.2, and evaluating the approximate formula
Eq. (9.27). Contrary to the hard-clamped membrane, the presence of
detuning does not improve the "depth" of the separability violation
(recall that it enabled entanglement detection with ∆EPR, cf. Fig. 10.2);
see the right panel of Figs. G.1. However, it detects entanglement in
more states, i.e. of temporal modes with more different bandwidths Γ .

We saw that the presence of a spectator mode strongly deteriorates
the detectable entanglement (cf. Sec. 9.4.5). To my knowledege,
state-of-the-art nano-fabrication and mode-engineering nowadays can
place the next closest mechanical mode a few percents away from the
targeted mode: in Tab. G.1 we quote a slightly optimistic 10% (yet
substantially less than the nearly 60% of the hard-clamped membrane).
The sufficient condition for detecting entanglement with ∆EPR in the
presence of a spectator mode Eqs. (9.50) is not satisfied here; the
ratio between lhs and rhs is about 1.3, again, better than for the hard-
clamped membrane parameters. The logarithmic negativity does not
reveal entanglement either.

As for the hard-clamped membrane, it is physically meaningful to
fix the ratio between the couplings (1/3 in Tab. G.1) and between the
bath occupation numbers n1/n2 = ω2/ω1 (corresponding to identical
substrate temperature). We sweep over g1 (and correspondingly g2),
which corresponds to varying the driving power, and over the bath’s
temperature n1 (and correspondingly n2). In Figures G.2 are contour
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Figure G.1 EPR-variance for the parameters from Tab. G.1 but with g2 = 0
(single mechanical mode). (left) Drive detuning is zero. The approximate formula
Eq. (9.27) can be compared to the exact result and the overlap is good. (right)
Exact EPR-variance with red detuning as in Tab. G.1.

plots of the EPR-variance minimised over Γ in the interval 10Hz to
1MHz (left) and logarithmic negativity (maximised over Γ ; right panel).
The nominal regime of Tab. G.1 is at 1 on both axes. The black lines
guide the eye to show that entanglement is not detected by either of
the tests – but the entanglement region is not far (!), as hinted by the
sufficient condition Eqs. (9.50) not far from being met. Apparently,
decreasing the driving power slightly would already suffice to detect
entanglement, albeit in modest amount. Much more efficient is the
reduction of the temperature. The parameter region where entangle-
ment is detected by ∆EPR is similar to that of the logarithmic negativity,
hence the sufficient condition is also informative about the necessary
and sufficient circumstances for entanglement in this regime.

Figure G.3 shows EPR-variance and logarithmic negativity minim-
ised and maximised with respect to Γ respectively, for a parameter
sweep of driving power (preserving the ratio between g1 and g2, as
above) and relative spectral distance between the mechanical modes
D Eq. (5.11). A spectator mode further away from the target leads to
a fast increase of the separability violation. The decrease in power
again leads to entanglement detection as in Figs. G.2. In the sweep
over ω2, we included the possibility that it is below the target mode
(where D < 0). A slight asymmetry can be identified – it is much
less pronounced than for the hard-clamped membrane (see Fig. 10.4) –
and here as well, it is (slightly) harder to detect entanglement with a
spectator mode below the target. We do not have a physical explana-
tion or intuition for this behaviour. The approximate formula for ∆EPR

Eq. (9.27) leads to results very close to the exact ones (left panel); in
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Figure G.2 (left) Exact ∆EPR minimised over the early–late temporal modes’
bandwidth Γ ∈ [10, 106]Hz. The results from the approximate formula Eq. (9.27)
(not showed) are close to the exact computation. (right) Exact logarithmic
negativity maximised over Γ analogously. The nominal parameter values are those
from Tab. G.1; the black lines guide the eye to see that in this parameter regime,
no entanglement is detected.
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negativity maximised analogously.
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Figure G.4 (left) Exact EPR-variance minimised over the early–late temporal
modes’ bandwidth Γ . The approximate results are very similar. (right) Logarithmic
negativity maximised analogously.

particular, it reproduces this asymmetry and could be used to study
it. When the spectral resolution between target and spectator modes
increases, then the sufficient condition allows for larger couplings
as observed for the logarithmic negativity. On the other hand, the
region of detectable entanglement with the EPR-variance seems to
be bounded to finite coupling strength. This is because of the single
mechanical mode sufficient condition Eqs. (9.46), which apparently
does not apply to necessary and sufficient entanglement tests like the
logarithmic negativity.

Finally, we sweep over the substrate temperature and the spectator
mode’s spectral distance to the target mode. For D at most 1, we
approximate that changes of n2 are only due to changes of substrate
temperature and are independent of varying ω2. Figures G.4 displays
the maximised logarithmic negativity over Γ (right panel) and the
minimised ∆EPR (left panel). Lower temperatures quickly lead to
appreciable entanglement, as observed in Figs. G.2 already.

g.2 photonic crystal

We move now to a different sort of optomechanical device: a
photonic crystal with a phononic structure. The phononic struc-
ture implements, like the soft-clamped membrane, a bandgap for
the mechanical vibration modes of interest. Additionally, (very) large
aspect ratio of the deforming part minimises banding-losses (soft-
clamping). Differently from the membranes, the deforming structure
has a photonic crystal pattern forming an optical cavity and effect-
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Physical property Symbol Value Units

mech. frequencies ω1 1.04 × 106 × 2π [rad Hz]

ω2 1.15 × 106 × 2π [rad Hz]

cavity linewidth (FWHM) κ 5.25 × 109 × 2π [rad Hz]

drive detuning ∆ −108 × 2π [rad Hz]

optomech. coupling g1 2.55 × 106 × 2π [rad Hz]

g2 0.8 × 106 × 2π [rad Hz]

mech. linewidth (FWHM) γ1 0.02 × 2π [rad Hz]

γ2 0.1 × 2π [rad Hz]

mech. quality factor Q1 5 × 107 []

Q2 107 []

mech. baths temp. T1 15 [K]

T2 T1 [K]

baths’ occupation numbers n1 3.27 × 105 []

n2 3.26 × 105 []

Table G.2 Photonic crystal with soft-clamped phononic shield structure as in
[GNG19]. Parameters provided and generously commented by Jingkun Guo and
Simon Gröblacher in private communications.

ively trapping the light within the material. The thus formed cavity
light mode is co-localised with the mechanical deformation mode into
a volume comparable to the mechanical deformation, therefore the
cavity mode is very susceptible to the mechanical motion and vice
versa – i.e. the single photon optomechanical coupling g0 Eq. (5.8) is
large (compared to other optomechanical devices like membranes).
Another significant difference to the membrane setups is the linewidth
of the photonic crystal cavity which is significantly larger.

The precise device we study is that of Ref. [GNG19] and its para-
meters are given in Tab. G.2 – and we benefited from the detailed
comments and insights from Jingkun Guo. Presently, mechanical and
optical environments are the same as for the membranes: the bulk of
matter the phononic structure is (softly) clamped to and the free fields
are at optical frequencies. Therefore the QLE model of Sec. 5.4 and
the results of Ch. 9 apply as for the membranes.

The sufficient condition for the single mechanical mode scenario
Eqs. (9.46) is not satisfied by a factor 6 so that the protocol would not
detect entanglement with the EPR-variance. We find, however, that the
logarithmic negativity does detect the entanglement, see Fig. G.6. With
the detuning quoted in Tab. G.2, we found that ∆EPR does not detect
entanglement either, contrary to the hard-clamped membrane. In fact,
we found no suitable detuning enabling entanglement detection with
∆EPR in this operation regime.
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Figure G.6 Exact logar-
ithmic negativity for a
single mechanical mode
and the parameters of
Tab. G.2, with or without
detuing.
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Figure G.7 (left) Exact EPR-variance minimised with respect to Γ between 1 Hz
and 0.1 MHz. The results from the approximate formula Eq. (9.27) are very similar.
(right) Logarithmic negativity maximised over Γ analogously. Sweep parameters
given as ratios of nominal values from Tab. G.3. To the left of the plots, the
number of photons in the cavity is just above 1, hence we cut the sweep there.

As one can see from the PSD of this device, Fig. G.5, there are many
mechanical modes relatively close to the target: in Tab. G.2 we chose
a spectator mode spaced by 100 kHz from the target mode, this is
some 10% relative spectral distance. The coupling of the spectator
mode g2 is estimated to be about 1/3 of g1 (like for the soft-clamped
membrane). Therefore, one expects that the spectator mode will have a
strong negative effect on the detection of entanglement. The sufficient
criterion in the presence of a spectator mode Eqs. (9.50) is not satisfied
by a factor 17.

Keeping the ratios g1/g2 and n1/n2 (same substrate temperature
for the mechanical baths), we swept g1 and n1 over a few orders of
magnitude. The results are in Figs. G.7. Logarithmic negativity and
EPR-variance find entanglement at temperatures 6% of the nominal
15K, and lower coupling strengths with a sweet-spot at three times
less power than in Tab. G.2. Decreasing the driving power decreases
the couplings gj, but with photonic crystals with large single photon
coupling g0 the cavity population is not so large. In the present case,
the nominal driving power corresponds to about 118 cavity photons,
therefore the sweet-spot of operation is 118/32 ≈ 13 photons or so.
This becomes close to the weak drive regime where the linearisation
of the interaction Hamiltonian is not accurate any more.

Guided by the sufficient condition Eqs. (9.50) and by the results of
Figs. G.7, we set the temperature of the mechanical baths to 1.5 K, then
sweep the spectral distance between the mechanical modesD Eq. (5.11)
and g1 (keeping the ratio of couplings fixed). The entanglement tests
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Figure G.8 The substrate temperature is 1.5K, i.e. 10 times less than in Tab. G.2.
(left) Exact EPR-variance minimised with respect to Γ between 1 Hz and 0.1 MHz.
The approximate results are very similar. (right) Logarithmic negativity maximised
analogously.
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Figure G.9 The couplings g1, g2 are 30% of their nominal values in Tab. G.2.
(left) Exact EPR-variance minimised with respect to Γ between 1 Hz and 0.1 MHz.
The approximate result is very similar. (right) Logarithmic negativity maximised
analogously. The weird (sharp) features for negative D are due to numerical
instability, as far as we can tell.



G.2 coherent-scattering levitation 193

optimised over Γ are showed in Figs. G.8. We recover the sweet-spot
for g1. In Figs. G.9, we fix g1 to 30% its nominal value, then sweep
over the spectator mode’s frequency and the substrate temperature
(with n2 depending only on the substrate temperature and not on
ω2). In this parameter sweep, the results are affected by numerical
instabilities.

g.3 coherent-scattering levitated nano-particle

We study yet a different implementation of an optomechanical
device: that of a levitated nano-particle. The reflecting object is a
dielectric (e.g. glass) particle several tenths of nanometers in size.
When placed in electromagnetic radiation of wavelength much larger
than the particles’ size (i.e. the Rayleigh scattering regime), the particle
effectively looks like a (point-like) dipole emitter [Del+20b]. If the
radiation is a tightly focused travelling wave, then the dipolar forces
form a 3-dimensional trap for the particle, close to the intensity max-
imum of the light beam. A thus trapped particle can be moved or
even levitated; at optical frequencies one calls these 3D traps optical
tweezers [AD77; Pes+20].

In the small displacements limit, the potential experienced by the
particle’s centre-of-mass is quadratic, therefore we are again in pres-
ence of a harmonically moving mechanical oscillator. The scattered
light and the particle’s centre-of-mass exchange momentum leading to
optomechanical interaction between them: the phase of the scattered
light encodes information about the position of the particle, while the
laser vacuum fluctuations disturb the particle’s motion. In the limit
of strong tweezer intensity, the (linear) optomechanical interaction
Hamiltonian Eq. (5.7) describes this interaction well [Del19; GB+19].
Then the QLE Eqs. (4.10) are appropriate to describe this system, and
the model of Sec. 5.4 is valid. In the setup we consider, the dominant
dissipation rates are feedback cooling and gas damping, and the main
noise processes are photon recoil and collisions with residual gas
molecules [Del19].

In the setup studied here, the tweezer light is perpendicular to a
cavity mode – the cavity defines the detected mode – and the particle
is held in that cavity mode (i.e. the centre of the trap is in the standing
wave of the cavity): this the so-called coherent-scattering configuration.
It leads to rich tuning possibilities, as is discussed in detail in [Del+19;
Del19; GB+19]. The experiment that provided the data we studied is
the same that achieved the first passive cooling of a levitated nano-
particle into its ground state of motion [Del+20b]. Table G.3 lists the
parameters of this system for the purpose of detecting optomechanical
entanglement.
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Physical property Symbol Value Units

mech. frequencies ω1 190 × 103 × 2π [rad Hz]

ω2 209 × 103 × 2π [rad Hz]

cavity linewidth (FWHM) κ 193 × 103 × 2π [rad Hz]

drive detuning ∆ −100 × 103 × 2π [rad Hz]

optomech. couplings g1 55 × 103 × 2π [rad Hz]

g2 10 × 103 × 2π [rad Hz]

mech. linewidths (FWHM) γ1 10−3 × 2π [rad Hz]

γ2 1.8 × 10−3 × 2π [rad Hz]

mech. quality factors Q1 1.9 × 108 []

Q2 1.16 × 108 []

effective occupation numbers n1 30 × 106 []

n2 n1 []

Table G.3 Parameters of a levitated nano-particle in coherent-scattering configur-
ation. The set up is the same as that in [Del+20b] but some parameters were
adapted: in particular, the mechanical frequencies of the mechanical modes was
reduced compared to [Del+20b] so it is not in the sideband resolved regime. Here,
κ ≈ ω1 which is not the unresolved sidebands regime Eq. (8.4) and the approx-
imate formula Eq. (9.27) might not be very accurate. The exact computation
remains exact however. Parameters generously provided and commented for us by
Uros Delic, Manuel Reisenbauer, Kahan Dare, and Aisling Johnson.
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Figure G.10 Power spectral density of 8 seconds of measurement. The mechanical
modes are indicated with ticks on the top axis: x-motion at 190 kHz is the targeted
mode, y-motion at 209 kHz, and z-motion at 47 kHz are spectators. The target
mode is not sharp because it is heavily cooled (passive cavity cooling when ∆ < 0
plus feedback). The z-mode is not Lorentzian because its motion explores the
non-linear part of the Gaussian trapping potential.
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Figure G.11 Logarithmic
negativity for the para-
meters of Tab. G.3, also
without detuning ∆ = 0,
and for a single mech-
anical mode. The non-
smooth features are prob-
ably due to numerical im-
precision.

With the parameters of Tab. G.3, the sufficient conditions Eqs. (9.46)
and (9.50) for detecting entanglement with the protocol (for both the
single and the spectator mode cases) are not satisfied by factors of
several hundreds. In the single mechanical mode scenario, the logar-
ithmic negativity does detect entanglement in the exactly computed
covariance matrix, with and without detuning, see Fig. G.11. This
reflects the universality on entanglement in that scenario [MDC10;
Dir+24]. We did not find any detuning for which ∆EPR detects entan-
glement. The detuning sweep tested with the logarithmic negativity
on Fig. G.12 shows a sweet spot, close to the detuning in the Tab. G.3 –
which is on purpose. On this figure, the bandwidth Γ of the temporal
modes that are entangled is larger than the mechanical frequency
Γ > ω1, which we did not expect would lead to entanglement in our
theoretical explorations in Ch. 9.

We could not produce informing plots when the spectator mode is
considered; entangled regimes typically showed suspicious behaviour
that we associated to numerical instabilities or imprecision. It is worth
noting that assuming perfect orthogonality between the cavity and the
tweezer modes, then choosing the polarisation exactly perpendicular
to the cavity axis and placing the particle at a minima of the cavity
standing wave, then only the motion of the particle along the polarisa-
tion has finite overall coupling g1, while the motion along the other
two directions has vanishingly small coupling g2 → 0 [GB+19, Fig. 4],
see also [Del19]. Therefore, the sufficient condition Eqs. (9.50) with a
spectator mode can, in principle, always be fulfilled(!).

Then, in principle, the result of Fig. G.12 is that substantial entan-
glement can be detected. However the filter bandwidth are broad
compared to the mechanical frequency in the present parameter and
we saw that spectral features far from the mechanical peak relative
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Figure G.12 Logarithmic
negativity for the paramet-
ers of Tab. G.3. The de-
tuning in the table was
chosen so that it is in the
region maximising the log-
arithmic negativity.
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to Γ can have strong detrimental effect on entanglement detection.
Therefore, it is advisable to work in a regime where the necessary
Γ is smaller. The necessary condition Eq. (9.35) Γ > Γ tot

1 is helpful
here. For the current parameter is ≈ 0.5 MHz, compatible with the
entangled regions in Figs. G.11 and G.12. Presently, an optimisation
approach would be using a cavity with a broader linewidth, along
with less power which would reduce both g1 and n1 in the regime
dominated by photon recoil heating. Less power also decreases the
mechanical frequency, which does not enter the necessary condition.
Our insights based on our study of the EPR-variance in Ch. 9, is that
the relation between Γ and ω1 is relevant and appears in the single
mode sufficient condition; from that point of view it is not clear that
one would actually gain from decreasing the power. On the other
hand, necessary and sufficient entanglement tests like the logarithmic
negativity can be used and working lower Γ tot

1 allows for temporal
filters with narrower bandwidth.
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D ATA A N A LY S I S P I P E L I N E

The main description of the protocol was thoroughly presented in
Jason Hölscher-Obermaier’s thesis [HO17, Ch. 5] and further discussed
in Ramon Moghadas Nia’s thesis [MN17, Part V], hence we do not
reproduce them here. Rather we focus only on those points that we
estimate meaningfully complement Jason’s and Ramon’s works.

We make a short note on the home-made data analysis software
code runs on Matlab R2012a on a computer with (Linux) openSUSE
operating system. It has a CPU Intel Xeon E5-2630 v3 2.40GHz with
32 cores, and 120GB of RAM. The code is not optimised to run on less
memory and the full parallelisation capacity has not been attempted
yet. The original and largest part of the implementation is due to
Jason Hölscher-Obermaier; Sebastianimproved statistics, the and the
present author contributed several parts. The full software has a wide
range of functionalities implemented in a large number of functions;
its usage is then accordingly involved. The code will be provided
upon request.

h.1 measurement records

According to the description of the protocol in Part ii, the necessary
data to perform the protocol are measurements of both quadratures
of the light after it interacted with the mechanical oscillator. In the
following, this measurement is called the signal data. The light is
monitored continuously (i.e. in the limit where the sampling rate 1/dt
is much faster than any relevant dynamics of the system) to form time
traces of both quadratures. The protocol involves determining the
matrix of covariances between temporal modes of the light: one applies
the temporal mode profiles to successive chunks of the time traces
(see Sec. H.3); the time traces of pulses form repeated measurements
of the temporal modes that we use to estimate the covariance matrix;
see explanations in [HO17, Sec. 5.3].

Tacit in its formulation, the protocol requires a reference for the
fluctuation strength – or noise level – of the data. As we saw in Sec. 3.4,
Gaussian entanglement is essentially squeezing along combinations
of quadratures from both parties. Entanglement tests thus assess
whether fluctuations are below those of the vacuum – which is the
definition of squeezing, cf. Sec. 3.2. In the theoretical description,
we worked with dimensionless units where the variances of the elec-
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tromagnetic vacuum fluctuations are 1/2, cf. Sec. 2.5. We call this
reference of noise strength (or amplitude) a unit of shotnoise 1. It sets
the scale for the separability bounds; e.g. the EPR-variance Eq. (3.13)
applied to early and late modes that are both in the vacuum state
gives ∆EPR = 4 × 1/2 + 4 × 0 = 2, which is precisely the separability
bound. Practically, this noise reference is set by the calibration of
the measurement records (typically in Volts) to the physical motion
of the mechanical oscillator (in meters). Instead of converting Volts
to (absolute) values in meters, we use shotnoise limited detectors (like
homo- and hetero- dyne detection, cf. App. F) that resolve vacuum
fluctuations – we call a measurement of electromagnetic field vacuum
fluctuations a shotnoise measurement; see Sec. F.1.1. Such a measurement
is then our reference for the vacuum noise amplitude and we rescale
the signal data to that reference: this is the calibration to shotnoise units
detailed in Sec. H.6 below.

Finally, all real detectors are subject to "dark signals" (also called
"dark counts"): this is the non-zero output of a detector that receives
no input; see Sec. F.2.2. A measurement of the detector’s output when
no light is sent to it (everything is turned off, including the local
oscillator; or one blocks physically the entry of the photodiodes) is
called a darknoise measurement. A darknoise measurement characterises
the dark counts contribution that can be corrected from signal and
shotnoise data, as explained in Sec. H.5 below.

In summary, the protocol needs six time traces: both quadratures of
a signal measurement encoding the mechanical motion, of a shotnoise
measurement as reference for the noise strength, and of a measurement
of the darknoise of the detectors.

h.2 notations

This section introduces the notation to describe the statistical prob-
lem of estimating the covariance matrix of temporal modes from
discrete measurement records.

The results of amplitude and phase quadrature measurements are
described by random variables X and Y respectively. Their individual
statistics is that of measurements of the (quantum) observables amp-
litude X̂ and phase Ŷ observables of the quantum state of the light. (In
this section, and in this section only, we use hats to distinguish oper-
ators.) We group the quadratures in a 2-vector of random variables
(X,Y)T , and we denote R either of its entries.

A measurement record of the observable R̂, with the statistics of
R, is a list R = {Rj}

N
j=1, where the N samples Rj are the measurement

1. In this part, we use the terms vacuum and shotnoise interchangeably, although
it is somewhat misleading; see Sec. F.1.1.
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outcomes distributed according to the light’s state (and Ndt = T the
duration of a time trace). The list R samples the statistics of R. We
define the 2-vector R := (X, Y)T , and a single measurement sample is
denoted Xj, Yj or Rj.

We used capital letters so far because the quantities carry units: the
records R are measured in volts. When rescaled to shotnoise units (see
Sec. H.6), they are dimensionless and we denote the thus calibrated
record r. Relative to the model of Sec. 5.4, r here is a sampling of the
statistics of r̂c,out Eqs. (5.23).

h.3 pulsed time traces

Ultimately, it is the state of the early–late temporal modes of the light
that we need to estimate. To this end, we apply the mode functions
fE and fL Eqs. (8.7) to the time traces repeatedly, so as to generate a
sampling of the statistics of the quadratures of these temporal modes;
as pedagogically and thoroughly explained in [HO17, Sec. 5.3].

First, we need to adapt the definition Eq. (8.6) of a temporal mode
operator, with the temporal profile fα (α = E,L), to the discrete
measurement records of quadratures r. Define discretised mode
functions fα,m := fα(tm) evaluated at the m-th measurement time
tm = m× dt . The mode functions are truncated after M samples and
M is chosen such that the mode functions have decayed enough: if
a set of G decay rates {Γg}g = 1G is studied and Γmin is the smallest,
M is such that e−ΓminMdt ∼ 1% 2. There are then Npp := ⌊N/(2M)⌋
early–late pulse-pairs (pp) per time trace (where the bracket ⌊□⌋ takes
the integer part of the number inside).

Second, we use the representation change described in App. C.1 to
express the mode functions in the quadrature representation. In their
matrix formulation Eq. (9.3), Flα is diagonal in the ladder operator
representation and its counterpart in the quadrature representation is
given by Fqα(t) = R−1

2 Flα(t)R2, where R2 is the representation rotation
matrix from Eq. (C.4) (not to confuse with the second entry of a
measurement record!). Explicitly, in quadrature representation, we
have 3

Fα(tm) = Fα,m =

(
Re[fα,m] −Im[fα,m]

Im[fα,m] Re[fα,m]

)
. (H.1)

The lists Rα = {Rα,p}
Npp
p=1 of quadrature R, of temporal modes α =

E,L, have Npp elements that sample the distribution of the observable

2. The threshold of one percent is not based on any particular consideration.
3. It is equivalent to use the relations Eqs. (2.18) between ladder and quadrature

operators to convert the measurement record into an expression for the corresponding
ladder operators, apply the mode functions as defined in Eqs. (8.7) and then turn the
result back into quadratures, as explained in [HO17, Sec. 5.3].
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R̂α. They form (effective) measurements of the quadratures of the
temporal modes. Given the lists of measurement records R, the Rα,p

are given by

Rα,p =


∑M

m=1 FE,mR(p−1)M̄+m, if α = E∑M
m=1 FL,mR(p−1)M̄+M+Msep+m, if α = L

(H.2)

where Msep := ⌊Tsep/dt ⌋ is the number of samples in the duration Tsep

between the pulses and M̄ := 2M+Msep is the duration of a single
early–late pulse-pair. See [HO17, Fig. 5.2] for a depiction without
separation between early and late modes.

h.4 covariance matrix

The 4-vector of random variable Rtm := (XE,YE,XL,YL)
T represents

r̂tm form Eq. (9.6), up to a units calibration factor. The covariance
matrix of the corresponding 4-variate (normal) distribution with zero
mean is

Σtm := E
[
RtmRtmT

]
(H.3)

where E is the mathematical expectation value. It accordingly repres-
ents the quantum state of the joint temporal modes σtm from Eq. (9.7),
up to calibration (highlighted by the capitalisation). Given the 4-vector
of lists of samples Rtm = (XE, YE, XL, YL), that we assume have zero
mean, the best unbiased estimate of Σtm is

Σtm ≈ Σtm :=
1

Npp − 1

Npp∑
p=1

Rtm
p Rtm

p
T . (H.4)

The rhs is the reconstructed covariance matrix from a dataset. Just like
σtm, it is 4-by-4 with the early sector (2-by-2 block) on the top left, the
late sector on the bottom right, and the early–late correlations in the
non-diagonal blocks. Bi-partite entanglement is assessed with respect
to the early–late partition. In practice, we store Rtm as a 4-by-Npp array,
where the rows are the variables and the columns the observations,
and use standard functions such as numpy’s numpy.cov() or Matlab’s
cov() to compute Σtm

S [S = sig, sn, or dn for signal (sig), shotnoise
(sn), and darknoise (dn) data]; and for the different mode function
bandwidths Γg, g = 1, . . . , G. Covariance matrices from signal and
shotnoise data are faithful estimates of the quantum state of their
temporal modes (state tomography). For darknoise data, it is the cor-
relation matrix of the corresponding classical noise processes filtered
by the temporal modes – we refrain from assigning any quantum
interpretation to Σtm

dn.
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h.4.1 Multi-mode evaluation

In Sec. 5.6 of Ref. [HO17], Jason generalised the scheme to more
temporal modes (see also Sec. 8.2.1): the early–late partition remains
the same, but more demodulation frequencies are used – typically
these frequencies are the resonance frequencies of other mechanical
modes. 4 n demodulation frequencies ωj lead to the definition of 2n
mode functions

fEj(t) = NE,j(t)e−iωEjt, with ωEj = ωj + i Γ (H.5a)

fLj(t) = NL,j(t)e−iωLjt, with ωLj = −ωEj (H.5b)

where j = 1, . . . , n. Define a multi-index labelling all the mode
functions α := E1,E2, . . . ,L1, . . . ,Ln, then the Nα(t) insure orthonor-
mality of all the mode functions and they depend on time. 5 In
practice, one gives a list of mode functions – in the basic form
{e−iωαt : α = E1,E2, . . . ,Ln} – to an othonormalisation algorithm
like Gram-Schmidt or Householder. 6 We note that the exact shape
of the orthonormal mode functions (i.e. the Nα(t)) depends on the
order in which the non-orthogonal temporal profiles are fed into the
algorithm. Our rule of thumb is to order the list of frequencies with
the "most important modes" first so that their temporal shape is least
deformed by the orhtonormalisation: the target mode is the ad hoc
most important mode; we have no rigorous, or systematic, or robust,
or smart way to order the other modes. To our experience, we observe
differences in the results for different ordering of the modes but they
are typically not large or important, and we found no usable patterns.

The structure of the estimated multi-mode covariance matrices is
set by the structure of the 4n-vector

Rtm := (XE1, YE1, XE2, . . . , YEn, XL1, . . . , YLn)
T . (H.6)

In this more complex reconstruction, we still test early–late bi-partite
entanglement (where both parties have internal structures with n

modes each) because it is the only relevant entanglement configuration
to infer optomechanical entanglement with the theorem of Ch. 7. Now,
for other purposes and sheer scientific curiosity, one could study
all (possibly multi-partite) entanglement configurations of the thus
estimated state of the light [HE06].

The whole procedure is repeated for a set of different decays {Γg}Gg=1
thus generating G reconstructions of 4n-by-4n covariance matrices.

4. In principle the decay rates could be varied as well, and for each mode inde-
pendently.

5. Nα(t) introduces oscillations of the exponential hull; see [HO17, App. C.2] for
a depiction of this effect.

6. The difficulty here is that this input basis has long vectors that are quite co-
linear (with many entries that are close to zero). We prefer Matlab’s qr() function,
which is stable, accurate, and relatively fast.
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We assumed symmetric (equal) decay rates in early and late parties,
and for all demodulation frequencies, because it reduces the number
of settings to explore but the procedure can be further generalised
to arbitrary decay for each demodulation and asymmetric early–late
modes.

Our experience with the analysis of various experiments’ data is
that including temporal modes demodulating the sidebands of neigh-
bouring mechanical modes always helps, in the sense that the witness
values (logarithmic negativities) are always smaller (larger) when in-
cluding a few more of the mechanical modes. There is a limit where
including too many stops being beneficial and unexpectedly high or
wrong negative witness values are returned by the analysis – to our
experience, including up to three modes yields reliable and stable
results that can be interpreted physically.

h.4.2 Two-sideband evaluation

A particular form of multi-mode evaluation was suggested by Kle-
mens Hammerer and was already documented in [HO17, Sec. 5.8]. We
call it the two-sided evaluation and, to our experience, it always leads to
smaller witness values (or larger logarithmic negativities). It consists
in accounting for the other sideband in each temporal mode.

Recalling the discussion in Sec. 8.2, the early temporal mode de-
modulates the red sideband of light originating from the two-mode
squeezing interaction. In a two-sided evaluation, one uses an ad-
ditional early temporal mode that demodulates the blue sideband.
Analogously, the late mode originally demodulates the up-converted
photons in the blue sideband; in a two-sided evaluation one adds
a late temporal mode demodulating the red sideband. It thus be-
comes a multi-mode evaluation where both the early and late parties
are composed of two modes each (and the covariance matrices are
8-by-8), but it accounts only for the target mechanical mode. In prac-
tice, adding the opposite sideband amounts to demodulating at −ω1:
explicitly, if ωE,1 = ω1 + i Γ , then for the second sideband we have
ωE,2 = −ω1 + i Γ ; the late demodulation frequencies are found by
symmetry ωL,j = −ωE,j.

According to our argumentation in Ch. 6 about entanglement being
generated first between the mechanical oscillator and the red side-
band through the two-mode-squeezing interaction, and subsequently
mapped coherently onto the blue sideband via the beam splitter inter-
action, then one should not expect any additional useful information
about optomechanical entanglement from this two-sided evaluation.
Jason has suggested that the effect is to purify the reconstructed state
[HO17, Sec. 5.8] because the opposite sidebands provide more inform-
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ation to reconstruct it faithfully. It sounds reasonable and it is our best
explanation so far, but it has not been checked rigorously yet.

h.5 darknoise correction

Because darknoise is independently characterised (by the darknoise
measurement), and not related to entanglement, it can be corrected in
the signal and shotnoise data. The central assumption is that it is not
correlated with either of them, so that the correction can happen at
the level of the covariances as follows:

Σtm
s = Σtm

s −Σtm
dn (H.7)

with s = sig or sn.

h.6 calibration to shotnoise units

As we already mentioned, the measurement records are in Volts
while the entanglement tests, detailed in Secs. 3.4 and 8.3, are defined
for operators in dimensionless units. We opt to rescale the data to the
dimensionless units used throughout the theoretical developments of
the first two parts. In these units, the commutator of the quadrature is
complex i and the variance of the electromagnetic vacuum fluctuations
is 1/2 for both quadratures. We call these units shotnoise units.

A shotnoise measurement with shotnoise limited detection is an
independent characterisation of the amplitude of the vacuum fluctu-
ations. The random variable Rsn represents the statistics of an idealised
measurement of the quadrature R̂ of vacuum fluctuations; i.e. Rsn

is a white-noise process with flat power spectral density (PSD), as
discussed in Secs. H.1. A real measurement of shotnoise will not be
perfectly white and one expects the PSD to display non-flat features:
prominently a high frequency cut-off and possibly other frequency
responses of the detector (see red curves in Fig. 10.1 for an example).
The spectral region, which faithfully corresponds to vacuum noise,
is where the frequency response is flat. One thus selects the largest
possible frequency interval around the targeted mechanical frequency
where the shotnoise PSD is flat. The median 7 of the PSD in this
interval nsn is what we call the noise level of the shotnoise data – it is
in units of Volts squared per Hertz.

Take a data set of shotnoise Rsn sampled at a rate of 1/dt so that
the highest resolvable frequency is 2/dt =: fNy, also called Nyquist

7. The median is a more conservative estimate of the noise level than the mean
because it is less susceptible to outliers orders of magnitude larger than the floor
level (like noise peaks). Also, the computed PSD are averaged, thus forming a χ2-
distribution with as many degrees of freedom as averages (i.e. a sum of squared
normal distributions), which might be asymmetric.
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frequency. Denote its PSD SRsnRsn(ω) (computed with the Welsch
method averaged many times) and call nsn its vacuum noise level – i.e.
the median of SRsnRsn(ω) for the selected frequency interval where it
is flat. By the Wiener-Khinchin theorem [Cle+10, App. A.1.]〈

R2
sn
〉
=

∫∞
−∞ dωSRsnRsn(ω). (H.8)

The rhs is approximately nsnfNy. Because Rsn is a realisation of the
statistics of the (dimensionless) observable r̂ of the vacuum state,
the lhs corresponds to the vacuum variance in Volts. Introduce the
dimensionful calibration factor Csn such that

1/2 = Tr
[
ρvacr̂

2] = 〈r̂2〉 = Csn
〈
R2

sn
〉
≈ CsnnsnfNy. (H.9)

Given Csn, one can perform the calibration to shotnoise units at the
level of the time traces Rs (s = sig or sn): first subtracting by the
darknoise level (diagonal entries of Σtm) and multiplying by

√
Csn. Or

it can be done at the level of the covariance matrices, as in [HO17,
Sec. 5.3.3], which is the preferred technique discussed in the next
section.

Estimates of the variances of the quadratures
〈
R2

sn
〉

(in the frequency
band where it is white) are on the diagonal of the covariance matrix
of shotnoise data Σsn. Moreover, Σsn = Σtm

sn because applying the
temporal profile to idealised shotnoise (white-noise) does not change
the covariance matrix. 8 If the entries on the diagonal of Σtm

sn are
the same up to the statistical uncertainty, then we use the minimal
diagonal value of Σtm

sn as calibration factor

1/2 = Csnmin
[
diag

[
Σtm

sn
]]

. (H.10a)

Taking the minimal value is a conservative choice because the result of
the calibration underestimates the shotnoise level, thus overestimating
the calibrated noise floors of signal and shotnoise; an overestimated
shotnoise floor (after calibration) is like a thermal component that
cannot be interpreted (falsely) as squeezing by the entanglement
test, thus mitigating the daunting risk of false positive detection of
entanglement. 9

8. Indeed,

Σtm
sn =

∫
dtdt ′Fα(t)

〈
Rsn(t)Rsn(t

′)T
〉

sym
Fβ(t

′)T = Aδαβσsn

where we used that the processes that generated Rsn are white, uncorrelated, and with
the same fluctuation amplitude A = 1/Csn. δαβ comes from the orthonormalisation
of the mode functions Eq. (8.12). For a single mode, the covariance matrix of shotnoise
is σsn := I2/2 in dimensionless (shotnoise) units, cf. Eq. (A.2).

9. This is different from the calibration proposed by Jason in [HO17, Sec. 5.3.3],
where they use the mean of the diagonal entries of the reconstructed vacuum state.
Moreover, here, the calibration factor Csn accounts for the photo-detector’s efficiency
ηd (cf. Eq. (F.14)), while it explicitly doesn’t in Jason’s method. Lastly, they propose
to perform the calibration after compensating for passive losses (discussed in the next
section H.7).
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We define the darknoise-corrected and shotnoise-calibrated estim-
ated covariance matrices, s = sig or sn,

σs = CsnΣs. (H.10b)

One is then in a position to perform any entanglement test on that
estimate of the early–late state, as explained in Sec. 8.3. We explain
the practical procedure in Sec. H.8 below.

Idealised vacuum noise is perfectly uncorrelated so that its cov-
ariance matrix is diagonal: Σtm

sn ∝ σsn = σvac := I2/2 Eq. (A.2). But
imperfect – non-white – frequency response of the detection scheme
might introduce finite non-diagonal elements in the reconstructed
vacuum state. For broad Lorentzian filtering mode functions (i.e. with
large Γ ), we expect larger non-diagonal elements as more of the non-
flat frequency features are picked up by the Lorentzians. Moreover,
finite statistics leave an uncertainty scaling like 1/

√
Npp. If the latter

is not the dominating reason for finite non-diagonal elements in Σtm
sn ,

then it is not a good characterisation of shotnoise – and one cannot use
it for calibration (or detection inefficiencies compensation, cf. Sec. H.7).
See also Sec. 11.1, [HO17, Sec. 5.11], and [MN17, Sec. 10.4] on witness
values of shotnoise data "diving" below the separability bound due to
the detection band-pass transfer function.

It can be that the measured variances of phase and amplitude quad-
ratures are different 10, as it is for example the case in the signal data
of the membrane datasets as can be seen in Fig. 10.1 where the noise
floors of the signal (in blue) PSD are at different heights. In that case,
one must calibrate the data of each quadrature independently. In
Fig. 10.1 one also sees that the noise level of the phase of shotnoise
(red) and signal (blue) are compatible because they are at the same
height, while the level of the amplitude quadratures differs signific-
antly between both measurements. This is much more problematic
because it means that both measurements cannot be compared, in
particular we cannot use the shotnoise to calibrate the signal data. In
that case, one can still calibrate the signal to shotnoise units using the
noise floor of the signal measurement as the reference. Any claim
based on that strategy is necessarily weaker because vacuum fluctu-
ations are not characterised independently; moreover, the heavy-tail
of the Lorentzian mechanical peaks can lead to the overestimation of
the noise floor, which is non-conservative for entanglement detection
(i.e. it can lead to false positive detection).

10. This is for instance the case if the amplification (or local oscillator power) in
both homodyne arms of a dual-rail homodyne detector is different (cf. Sec. F.3).
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h.7 detection inefficiency compensation

Detection inefficiencies are full-fledged decoherence mechanisms
leading to irreversible loss of coherence and information. Therefore
there is no hope of recovering what has been lost (quantum coherence)
in the sense that the correction can "fix the state". However, given
a model for the information loss and a characterisation of its para-
meters, it is possible to partially recover some knowledge of the state
by inverting the lossy dynamics. This is, in essence, the method we
present here to compensate for inefficiencies.

Measurement records of both quadratures were denoted Rs above
– it is a 2-vector of N measurement realisations (i.e. a 2-by-N matrix)
– where s = sig, sn, and dn, for measurements of signal, shotnoise,
and darknoise, respectively. Then the covariance matrices estimated
[cf. Eq. (H.4)] from this record was called Σtm

s . It is an estimate of
Σtm

DRH when σs is σtm
sig in Eq. (F.17) (where the superscript indicates

that the state of the dual-rail homodyne output is in expressed in
terms of the early–late modes). Similarly, Σtm

sn estimates the case where
σs = σtm

sn = σsn [cf. derivation of Eqs. (H.10)]; and Σtm
dn is an estimate

for Σtm
dn when no light enters the photodetectors (α = 0).

Inverting Eq. (F.17) gives the postprocessing procedure to obtain an
estimate of σtm

sig from Σtm
sig

σtm
sig ≈ σtm

sig :=
2

ηdνηopt

[(
Σsig −Σdn

)
2|α|2ηd

−
(

1 − ηdν
ηopt

2

)
σsn

]
(H.11a)

=
1
ηdet

[
σtm

sig − (1 − ηdet)σsn

]
. (H.11b)

In the first line, the subtraction in the rounded parenthesis is darknoise
correction Eq. (H.7); the division by Csn = 2|α|2ηd is the shotnoise unit
calibration of Eqs. (H.10). 11 The remaining expression in the second
line is what we refer to as the inefficiency compensation.

This is different from [HO17, Sec. 5.3.3 and App. C.5] where they
use the darknoise-corrected and shotnoise-calibrated estimate of the
vacuum state σsn instead of σsn. 12 The difference between both are
the amplitude of the diagonal elements which are smaller in σsn

due to our conservative shotnoise unit calibration Eqs. (H.10). In
the compensation formula Eq. (11.2), our choice is therefore more
conservative because it amounts to compensating less. Secondly, σsn

11. For the readers concerned that the operators and scalars forming h in this
section are dimensionless while Rs is in Volts and the estimated Σs in Volts squared,
they can multiply h by a detector gain G in Volts.

12. In [HO17, Sec. 5.3.3] the calibration factor is independent of the photo-detector’s
efficiency ηd and the calibration happens after compensating for passive posses. This
leads to the difference in treatment of the detection efficiency and visibility in their
treatment.



H.7 detection inefficiency compensation 207

has finite non-diagonal elements, e.g. due to remaining correlations
in the measurement records (relating to the necessarily non-white
spectrum of real data) or finite statistics. The assumption is that these
remaining imperfect non-diagonal elements are not significant so that
the estimated shotnoise state can be used as reference in the units
calibration (cf. Sec. H.6). Therefore, if compensating with σsn makes
the compensated state entangled while it is separable with σsn, then
this must be attributed to its non-diagonal elements. This means than
that the remaining correlations in σsn are significant and it is not an
accurate estimate of vacuum noise. This in turns implies that it cannot
be used for the calibration as a reference of quantum noise amplitude.

h.7.1 Gaussian channel formalism

The results of Eqs. (F.17) (and consequently (H.11a)) can be derived
with the formalism of Gaussian channels [Wee+12; EP03; EP02; Hol21];
see also [SC07, Sec. 2] for a smooth introduction. The completely
positive maps [NC10] that leave Gaussian states Gaussian are the
Gaussian channels (cf. Sec. 3.3). Given the covariance matrix of a
Gaussian state at the input of such a channel σin and its vector of first
moments min, then the output state is given by

σout = XσinX
T + Y (H.12a)

mout = Xmin (H.12b)

where X and Y are matrices, Y is symmetric, and they fulfil the condi-
tion

Y + i
Ω

2
− iX

Ω

2
XT ⩾ 0. (H.12c)

This is the complete mathematical description of the physical concepts
introduced in Sec. 3.3.

The Gaussian channel model for passive losses has X =
√
ηI and

Y = (1 − η)σsn = (1 − η)I/2. The dual-rail setup of Fig. F.4 is a series
of four loss channels per arm – There are 5 beam splitter per arm,
but, in our configuration, the amplifying beam splitter in front of
the homodyne detectors is not a loss channel since both its output
ports are detected and its added noise is cancelled in the balanced
configuration ηh = 0.5. The cascade of two beam splitters gives with
Eqs. (H.12)

σout = η2η1σin + (1 − η2η1)σsn. (H.13)

The pattern extends to the four beam splitters of the DRH detector
and we find

σDRH = ηdηDRνηoptσs + (1 − ηdηDRνηopt)σsn. (H.14)
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It is the same as Eq. (F.17) found above – up to the additive classical
darknoise contribution and the amplification by the LO. The method
here is simpler and less error prone compared to the explicit compu-
tation of Apps. F.3 and F.2 but it hides the (very many) assumptions
necessary to get there: identical photo-detector efficiencies, perfect
homodyne balancing, identical visibility of both homodyne detect-
ors, identical LO intensities, perfect π/2 phase shift between both
homodyne detectors, and uncorrelated vacuum noise inputs.

h.8 entanglement tests in practice

Consider the darknoise-corrected and shotnoise-calibrated covari-
ance matrices σtm

sig (for different filtering bandwidths Γg). If they are
4-by-4, so that the early and late partition are single mode, then the
PPT-criterion Eq. (3.17) is necessary and sufficient for entanglement –
equivalently, the logarithmic negativity is a measure of entanglement
(cf. Sec. 3.4 for details on Gaussian entanglement tests). In any case,
they are superior to the EPR-variance test, which is only sufficient.
If the early and late parties are composed of n > 1-modes (with 4n-
by-4n covariance matrices), then the PPT-criterion is only sufficient
for entanglement – and the logarithmic negativity is an equivalent
sufficient criterion. On the other hand, the optimal witness is still
necessary and sufficient in this scenario [HE06], therefore it is the test
we use to analyse experimental data.

Given the estimated state, we need to optimise the witness matrix
Wopt (only) for bi-partite entanglement across the fixed early–late
partition. For this, we use the Matlab library available from [HE06];
the corresponding semi-definite optimisation problem is solver with
the CVX package [GB14]. σtm

sig are given as input to the function and
the output is the optimal 4n-by-4n witness matrix Wopt that minimises

Tr
[
Woptσtm

sig

]
=: wopt. For each bandwidth Γg, one records the optimal

witness value wopt,g: plots of wopt against Γ are the typical output of
the analysis; we call these plots witness plots (like Fig. 9.1 for example).

When n > 1-modes are accounted for in each temporal party, one
may test different combinations of modes by tracing out the relevant
rows and columns of σtm

sig. The relevant rows and columns depend on
the ordering of the demodulated modes as explained in Secs. H.4.1.
For example, if n = 4 and I want the witness plot for the first 13 mode
only (the target), then I trace out rows and column 3 to 8 (early sector)
and 11 to 16 (late sector) in σtm

sig; if I want the witness plot for mode 1
and 4, then I trace out rows and columns 3 to 6 and 11 to 14. 14

13. Here, count starts at 1, like in regular maths, Matlab and Mathematica – unlike
in Python or C.

14. 4n-by-4n matrices are for single-sided evaluation. For two-sided evaluations (cf.
Sec. H.4.2) then σtm

sig is 8n-by-8n and the tracing also depends on the ordering of the
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Figure H.1 In the left column, we sample 1000 data points from a bi-variate
Gaussian distribution corresponding to a two-mode squeezed state Eq. (A.21)
with real squeezing parameter ξ = r = 0.1, cf. Sec. A.4. This simulates a
pulsed time trace of signal as in Sec. H.3. We estimate the 4-by-4 covariance
matrix of the simulated data set and apply different entanglement tests indicated
on the abscissa. We repeat the procedure 104 times and make histograms of
the results of the different entanglement tests. The black solid lines are the
result of the entanglement test on the (exact) two-mode squeezed state. In the
right column, we sampled from the distribution of a two-mode ground state (i.e.
r = 0) for comparison. Positive values of the logarithmic negativity measure
the entanglement, and ∆EPR and optimised witness values below 2 correspond
to entanglement (cf. Sec. 3.4). The logarithmic negativity and the optimised
witness over the entire data sets wfull are biased towards more entanglement, while
the cross-validated optimised witness wcross is biased towards separability. We
checked systematically for more 100 to 104 samples drawn from the distributions
and 100 to 105 repetitions: we found that these biases remain but their magnitude
decreases as the number of samples increases.
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There are several ways to find the optimal witness matrix Wopt from
the data. Firstly, one can use the exact analytical code to find the
expected state σtm

sig, feed it into the optimisation BiWit() to obtain

W
thry
opt , and apply it to the estimated state to get wthry

opt = Tr
[
W

thry
opt σtm

sig

]
.

Because the model necessarily misses some of the real processes, we
expect that σtm

sig can be fairly different from σtm
sig (or the "true" state of

the temporal modes approximated by σtm
sig) so that the witness matrix

is sensibly sub-optimal.

Secondly, one can use the entire information in the time trace and
find the optimal witness matrix Wfull

opt from BiWit() applied to σtm
sig es-

timated with the entire data set; we denote the corresponding witness
values wfull

opt . This correlates the entanglement test to the imperfectly re-
constructed covariance matrix and it can happen that the optimisation
procedure identifies imperfections in σtm

sig (e.g. due to finite sampling)
as entanglement features and optimise over them. This leads to a
bias towards entanglement, which is not conservative in terms of
preventing false positive detection of entanglement; see Fig. H.1 for
an example of this bias due to finite statistics.

To avoid this bias, the method adopted in the evaluations presented
in this work uses a cross-validated optimised witness scheme described
in Sec. 11.1. This method is (slightly) biased towards separability, as
is shown in Fig. H.1; this is conservative and mitigates possible false
positive detection of entanglement.

Figure H.1 also shows how logarithmic negativity and EPR-variance
are biased due to finite sampling fluctuations. The former is biased
towards entanglement, which is yet another reason not to use it; ∆EPR

seems unbiased on the other hand. The figure also shows the bias upon
sampling from the ground state and we see similar biases. Importantly,
in order to make the biases visible in the histograms, the number of
samples drawn from the simulated distribution and the number of
repetitions was kept relatively low compared to the analysis of real
data sets. A systematic study with larger numbers showed that the
biases decrease but remain.

h.9 confidence intervals with the bootstrap method

As highlighted in the numerical experiment that generated Fig. H.1,
finite sample size leads to variable estimates of entanglement of the
state; we see that the cross-validated optimised witness distribution
is slightly broader than the other, accounting for the fact that it uses
only half of the data to be reconstructed. Moreover, the measured

second sideband modes (recall, two-sided evaluation involves modes at frequencies
ω1 and −ω1). For convenience, one can systematically perform two-sided evaluations
and trace out the second sideband in σtm

sig to recover a single-sided evaluation.
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record might be affected by some additional (hopefully small) unchar-
acterised technical noises or drifts over the course of a measurement
campaign. To quantify the uncertainty on the cross-validated optimal
witness values wcross (cf. Sec. H.8), we re-sampled the estimated states
with the bootstrap method [ET94] and see how the wcross are distrib-
uted with respect to a single witness matrix Wcross

opt . The advantage of
this method is that it is agnostic of the noisy processes and how the
data are processed – it explores and realises the variability in the data
set.

Before we describe the method, we note that, for our purpose (of
witnessing entanglement only), it is not necessary to quantify the
uncertainty on the optimised witness matrix Wcross

opt . This is because
we make statements only when entanglement is detected, and one does
not need to say how confident we are in the prescribed measurement
corresponding to the witness – if it works, it works. For more specific
statements on the nature of the entanglement, what is really the
optimal witness, etc., then it can be interesting to bootstrap resample
the optimised witness and see their variability. This is not in the scope
of this work.

The optimisation algorithm processes the total uncertainty of σtm
sig in

a non-trivial way so that propagating it into an uncertainty on Wcross
opt

is possibly complicated. The method here involves computing Wcross
opt

only once with half of the data – i.e. no resmapling – and apply it
to the bootstrapped covariance matrices. This bypasses the difficulty
of quantifying the uncertainty on the witness matrix and remains a
conservative approach (in terms of avoiding false positive detection
of entanglement) because Wcross

opt is, in principle, not optimal for any
of the covariance matrices resampled by the bootstrap. One could
imagine applying the bootstrap on the first half of the data to produce
a distribution of witness matrices and thus sample its variability; then
apply them to a bootstrapped set of covariance matrices reconstructed
with the second half of the data.

The bootstrapping is thus performed on the second half of the data
Rtm that we denote Rcross. Bootstrapping consists in estimating the
covariance matrix (which we had called σcross) from sets of randomly
chosen samples from Rcross – the samples are drawn with replacement
with uniform probability distribution [ET94]. Explicitly, the traces
Rcross
α from Rcross each have K := ⌊Npp/2⌋ samples Rcross

α,k ; draw from
them K times with replacement and uniform 1/K probability; this
forms a bootstrap resampled traces Rboot

α (most probably different
from Rcross

α because some samples appear multiple times); compute
from Rboot the the thus resampled estimated state σboot (also probably
different from σcross); apply the witness Wcross

opt and obtain wboot (dif-
ferent from wcross); repeat the procedure Nboot times to generate a set
{wboot} of Nboot bootstrapped resampled witness values.
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The spread of the distribution of {wboot} is our estimate of the
uncertainty of the witness values of the data set. In order to capture
possible asymmetry in the distribution, we use the 5/95 percentile
confidence interval of {wboot} as error bars for the result wcross. Other
choices of results are possible: e.g. the mean or the median of {wboot},
but we opt for the unbootstrapped value wcross because it is the one
making use of most of the information in the available data. It is
worth visualising the distribution of values to assess that it is "peaked"
around wcross so that the choice of error bars is meaningful – we
performed regular checks and it has always been the case.

h.9.1 Improved confidence interval

Increasing the number of pulse-pairs Npp does shrink error bars.
Increasing the number of bootstrap resamplings as well and we see
saturation for Nboot > 500.

The duration of experimental datasets is typically limited by the
stability of the experiment or some technical reasons. There is no
doubt that most of them have existing technological solutions that
come with some experimental cost – potentially very high.

Rather than measuring longer, Lorenzo Magrini proposed to overlap
the pulse-pairs in order to increase their number: that is, instead of
defining pulse-pairs sequentially one after the other without overlap
(as in Eq. (H.2)), we modify their starting point so that they overlap.
For instance, if a single temporal mode needs 100 samples (i.e. the
mode functions are truncated after 100 samples), then a pulse-pair
has 200 samples (for no separation between the pulses, Tsep = 0). The
first pulse-pair then terminates at sample 200 and the next would start
at sample 201 (and end at sample 400). Instead, one could start the
second pulse-pair at sample 51 so that it terminates at samples 250;
the third pulse-pair would be between sample 101 to 300, etc. In so
doing, one has increased the total number of pulse-pairs for the same
time trace by a factor 4 (in that example).

From a pure statistical point of view, there is no fundamental added
information in doing so because the data set is the same and no addi-
tional information is available. On the other hand, the temporal modes
decay exponentially fast, effectively suppressing the information in
their tails (especially at larger bandwidths when they are particu-
larly short in time), by overlapping the pulse-pairs, one retrieves the
information suppressed by the exponential decays.
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h.10 physicality test

The covariance matrices we reconstruct from experimental data
are estimates of the measured physical state – they approximate it.
Possibly the approximation is poor and the reconstructed matrix does
not correspond to a quantum state. Indeed, we saw in Sec. 3.2 that
the second moments of quantum states must be "a little more than
positive definite" in order to fulfil Heisenberg uncertainty relations
Eq. (3.9)

σtm
sig −

i
2
Ω ⩾ 0. (H.15)

In fact, this condition characterises exactly the set of covariance matri-
ces describing (entirely) all the Gaussian states (up to the independent
first moments displacements) [AI07]: i.e. all matrices fulfilling this
condition correspond to all undisplaced Gaussian states of the Hilbert
space – by extension to non-zero first moments, they correspond to
all the Gaussian states. The condition is necessary for non-Gaussian
states. This Heisenberg bound can be formulated in terms of sym-
plectic eigenvalues (i.e. the eigenvalues of

∣∣∣iΩσtm
sig

∣∣∣, cf. Sec. 3.4.3) that
must be ⩾ 1/2.

We systematically test Eq. (H.15) on the estimated covariance ma-
trices: if σtm

sig satisfies it, we say that it is physical; if it doesn’t, we
say that it is unphysical. This is analogous to checking that a density
matrix estimated from data or computed numerically is Hermitian,
of trace 1, and semi-positive definite. In principle, the entanglement
tests presented in this work (in Sec. 3.4) are meaningful under the
assumption that the tested covariance matrix is a (quantum) state, i.e.
that it is physical. Therefore, one should discard unphysical estimates.
As noted in [Gut+20, Sec. IV.C], for states of high purity, statistical
fluctuations and other technical imperfection in the data may quickly
make σtm

sig unphysical.

Figure H.2 shows the effects of finite sampling on physicality for a
squeezed state (with real squeezing parameter ξ = r = 0.1) and for the
vacuum state (r = 0). With the same method as in Fig. H.1, we sample
the distribution corresponding to the state to simulate a time trace
(the y-axis of the figure is the number of samples in these simulated
traces). We reconstruct the covariance matrix of the thus simulated
time trace and determine whether it is physical or not. We repeat the
procedure to determine how often the estimated state is physical (the
number of repetitions is the x-axis of the figure). For large statistics
(top right corner), between 5 and 10% of the reconstructed covariance
matrices are physical. The lower part of the plots shows that if the
time traces do not contain enough samples, then between 1 and 5% of
the matrices are physical. And the larger portion of physical estimates
on the top left of the plots is probably due to the lack of repetition.
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Figure H.2 Portion of physical covariance matrices in a sample size given by the
number of repetitions on the x-axis, and for covariance matrices estimated out of
traces of length given on the y-axis. The procedure is the same as in Fig. H.1 but
we apply the physicality test instead of the entanglement tests.

Therefore, one must expect that most of the reconstructed states from
experimental data may be unphysical if the state is close to being
pure. We expect that mixedness will make the reconstructed state
more likely to be physical.

h.11 asymmetric filtering bandwidths and over-fitting

We looked at asymmetric decay rates of the temporal functions
demodulating the first and second modes; we denote them Γj, j = 1, 2.
On Figure H.3 we show the analytical simulation of this scenario
(3-mode simulation, 2-mode 1-sided evaluation). A systematic study
of numerical simulations or experimental data would have been too
time-consuming and we did not pursue it. We opted for a (naive) two-
step gradient-decent optimisation on the experimental data (2-mode
2-sided evaluation). The logic is depicted on Figure H.3. First, we
evaluate the data in the standard way, i.e. sweeping over symmetric
bandwidths Γ1 = Γ2 (curved solid black line in the figure). Then, we
fix Γ2 to the value yielding minimal witness value and sweep the
bandwidth Γ1 of the target mode (keeping Γ2 fixed, i.e. it is still a
2-mode evaluation); this is the upper solid line in the figure, which is
not precisely correct for visibility. We fix Γ1 achieving the minimum
witness value and sweep Γ2 (horizontal line). The bandwidth realising
the minimal witness we call Γ∗2 : this is the white diamond in the figure.
We found Γ∗2 ≈ 50 kHz from the experimental data (dashed line). A
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Figure H.3 Optimised witness of analytically computed temporal modes states:
3-mode simulation, 2-mode 1-sided evaluation. The bandwidths of the filters
demodulated the two modes were chosen independently Γ1 ̸= Γ2. The continuous
black lines illustrate the two-step gradient decent optimisation strategy we used
with experimental data (it is an exaggerated drawing); in this semi-log plot, the
curves line is for the symmetric Γ1 = Γ2 sweep.

last sweep over Γ1 (lower full width line) for fixed Γ∗2 yields the witness
curves on Fig. H.4 (comparable to the lower right plot of Fig. 11.3).
Note that, in the search for Γ∗2 with the experimental data, none of the
preliminary sweeps showed entanglement, contrary to our depiction
in Fig. H.3.

To obtain these results, we had to increase the statistics of the
pulse-pairs by a factor five with the pulse-overlap method of H.9.1.
To ensure that the overlapping does not introduce additional (auto-
) correlations among the pulse-pairs, we included an additional –
dummy – temporal mode demodulating at 310 kHz where the signal
data are spectrally flat; cf. PSD in Fig. 11.2. The corresponding witness
curves (1&2-mode evaluations) are significantly above the separability
bound, indicating no entanglement-like correlation introduced by the
pulse-pair overlap.

The two panels in Fig. H.4 show the effect of the compensation
for inefficiencies. Using the original compensation formula [HO17,
Sec. 5.3.3], involving the shotnoise covariance matrix estimated with
the shotnoise data (cf. Sec. H.7), leads to even larger violation. In the
first evaluation without improved statistics, the compensation using
the ideal shotnoise state Eq. (11.2) lead to separable witness values
on average. The round of discussions of these results concluded that,
because the use of experimentally estimated shotnoise was decisive
to witness entanglement, we could not exclude that the correlations
highlighted by the witness are not due to the imperfection of the



216 data analysis pipeline

103 104 105 106

Γ [Hz]

1.90

1.95

2.00

2.05

2.10

2.15

2.20

w
cr

o
ss

without passive losses comp.

103 104 105 106

1.0

1.5

2.0

2.5

3.0

3.5

4.0

passive losses comp.

signal data
shotnoise data

Figure H.4 2-modes 2-sided witness plots with fixed bandwidth of the second
temporal mode (x-motion) Γ∗2 = 50 kHz. Left panel is without compensation
for passive losses and right panel is using Eq. (H.11a) (for total detection losses
ηdet = 0.11 [Mag+22]).

reconstructed shotnoise state (e.g. due to finite statistics or effects
similar to the "diving" witness values discussed around Fig. 11.1). It
came to me as a surprise that, with the improved statistics, we would
witness entanglement with the inefficiency compensation we propose
Eq. (11.2). Although it would be more conservative not to compensate,
I think that it is legitimate because there are Gaussian entangled states
that become separable due to passive losses, as described in detail
[Bar+11] for the 1 + 1-mode scenario.

The witness curve on the right panel of Fig. H.4, on it own, meets
all the criteria to be a successful detection of entanglement between
the early and late temporal parties. It is not shown here, but all the
reconstructed covariance matrices (also by the bootstrap resampling)
that are entangled are also physical; cf. Sec. H.10.

Nevertheless, I do not have enough confidence in this results to
call it a successful entanglement detection for the following reasons.
None of the sweep in the two-step gradient-decent procedure showed
entanglement and changing Γ∗2 by 10kHz is enough to loose entangle-
ment: to my current knowledge, it is a special point and I could not
find a behaviour in the experimental data that resemble the analytical
simualtions of Fig. H.3. Additionally, I must acknowledge that we
have been studying this precise dataset intensively: tweaking and
optimising the analysis. Early on, when we started trying out various
alternatives (relatively systematically) and optimising accordingly to
the results, Sebastian Hofer pointed out that we might be over-fitting
the data: i.e. introducing a global bias of the analysis towards the
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wanted result, given the data set. I think this is relevant point and we
cannot exclude it with that dataset.

This concern can be dissipated by applying the same procedure
to another set of measurements from that experiment and applying
the same logic, with the steps set before seeing the results. Datasets
were available, but they revealed no entanglement. A closer look
showed that the frequency of the target mode drifted by about a
kHz in the course of the measurement runs. The requirement on the
accuracy of the filter demodulation Eq. (9.48) indicates that this might
be the reason for the failure with the additional datasets (although the
relation was derived for devices with a cavity); see Sec. 9.4.4.
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